Indoor Obstacle Discovery on Reflective Ground via Monocular Camera

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Computer Vision Pub Date : 2023-10-20 DOI:10.1007/s11263-023-01925-4
Feng Xue, Yicong Chang, Tianxi Wang, Yu Zhou, Anlong Ming
{"title":"Indoor Obstacle Discovery on Reflective Ground via Monocular Camera","authors":"Feng Xue, Yicong Chang, Tianxi Wang, Yu Zhou, Anlong Ming","doi":"10.1007/s11263-023-01925-4","DOIUrl":null,"url":null,"abstract":"<p>Visual obstacle discovery is a key step towards autonomous navigation of indoor mobile robots. Successful solutions have many applications in multiple scenes. One of the exceptions is the reflective ground. In this case, the reflections on the floor resemble the true world, which confuses the obstacle discovery and leaves navigation unsuccessful. We argue that the key to this problem lies in obtaining discriminative features for reflections and obstacles. Note that obstacle and reflection can be separated by the ground plane in 3D space. With this observation, we firstly introduce a pre-calibration based ground detection scheme that uses robot motion to predict the ground plane. Due to the immunity of robot motion to reflection, this scheme avoids failed ground detection caused by reflection. Given the detected ground, we design a ground-pixel parallax to describe the location of a pixel relative to the ground. Based on this, a unified appearance-geometry feature representation is proposed to describe objects inside rectangular boxes. Eventually, based on segmenting by detection framework, an appearance-geometry fusion regressor is designed to utilize the proposed feature to discover the obstacles. It also prevents our model from concentrating too much on parts of obstacles instead of whole obstacles. For evaluation, we introduce a new dataset for Obstacle on Reflective Ground (ORG), which comprises 15 scenes with various ground reflections, a total of more than 200 image sequences and 3400 RGB images. The pixel-wise annotations of ground and obstacle provide a comparison to our method and other methods. By reducing the misdetection of the reflection, the proposed approach outperforms others. The source code and the dataset will be available at https://github.com/xuefeng-cvr/IndoorObstacleDiscovery-RG</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"31 49","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-023-01925-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Visual obstacle discovery is a key step towards autonomous navigation of indoor mobile robots. Successful solutions have many applications in multiple scenes. One of the exceptions is the reflective ground. In this case, the reflections on the floor resemble the true world, which confuses the obstacle discovery and leaves navigation unsuccessful. We argue that the key to this problem lies in obtaining discriminative features for reflections and obstacles. Note that obstacle and reflection can be separated by the ground plane in 3D space. With this observation, we firstly introduce a pre-calibration based ground detection scheme that uses robot motion to predict the ground plane. Due to the immunity of robot motion to reflection, this scheme avoids failed ground detection caused by reflection. Given the detected ground, we design a ground-pixel parallax to describe the location of a pixel relative to the ground. Based on this, a unified appearance-geometry feature representation is proposed to describe objects inside rectangular boxes. Eventually, based on segmenting by detection framework, an appearance-geometry fusion regressor is designed to utilize the proposed feature to discover the obstacles. It also prevents our model from concentrating too much on parts of obstacles instead of whole obstacles. For evaluation, we introduce a new dataset for Obstacle on Reflective Ground (ORG), which comprises 15 scenes with various ground reflections, a total of more than 200 image sequences and 3400 RGB images. The pixel-wise annotations of ground and obstacle provide a comparison to our method and other methods. By reducing the misdetection of the reflection, the proposed approach outperforms others. The source code and the dataset will be available at https://github.com/xuefeng-cvr/IndoorObstacleDiscovery-RG

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单目摄像机在反射地面上发现室内障碍物
视觉障碍物发现是实现室内移动机器人自主导航的关键一步。成功的解决方案在多个场景中有许多应用。其中一个例外是反射地面。在这种情况下,地板上的反射与真实世界相似,这混淆了障碍物的发现,导致导航失败。我们认为,这个问题的关键在于获得反射和障碍物的判别特征。注意,障碍物和反射可以通过3D空间中的地平面来分离。根据这一观察结果,我们首先介绍了一种基于预校准的地面检测方案,该方案利用机器人的运动来预测地平面。由于机器人运动对反射的免疫力,该方案避免了反射引起的地面检测失败。给定检测到的地面,我们设计了地面像素视差来描述像素相对于地面的位置。在此基础上,提出了一种统一的外观几何特征表示方法来描述矩形框内的对象。最后,在检测框架分割的基础上,设计了一个外观几何融合回归器,利用所提出的特征来发现障碍物。它还防止我们的模型过于集中于障碍物的部分而不是整个障碍物。为了进行评估,我们引入了一个新的反射地面障碍物(ORG)数据集,该数据集包括15个具有各种地面反射的场景、总共200多个图像序列和3400个RGB图像。地面和障碍物的逐像素标注提供了与我们的方法和其他方法的比较。通过减少反射的错误检测,所提出的方法优于其他方法。源代码和数据集将在https://github.com/xuefeng-cvr/IndoorObstacleDiscovery-RG
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
期刊最新文献
Reliable Evaluation of Attribution Maps in CNNs: A Perturbation-Based Approach Transformer for Object Re-identification: A Survey One-Shot Generative Domain Adaptation in 3D GANs NAFT and SynthStab: A RAFT-Based Network and a Synthetic Dataset for Digital Video Stabilization CS-CoLBP: Cross-Scale Co-occurrence Local Binary Pattern for Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1