{"title":"How Much Can One Learn a Partial Differential Equation from Its Solution?","authors":"Yuchen He, Hongkai Zhao, Yimin Zhong","doi":"10.1007/s10208-023-09620-z","DOIUrl":null,"url":null,"abstract":"<p>In this work, we study the problem of learning a partial differential equation (PDE) from its solution data. PDEs of various types are used to illustrate how much the solution data can reveal the PDE operator depending on the underlying operator and initial data. A data-driven and data-adaptive approach based on local regression and global consistency is proposed for stable PDE identification. Numerical experiments are provided to verify our analysis and demonstrate the performance of the proposed algorithms.\n</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"42 23","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-023-09620-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we study the problem of learning a partial differential equation (PDE) from its solution data. PDEs of various types are used to illustrate how much the solution data can reveal the PDE operator depending on the underlying operator and initial data. A data-driven and data-adaptive approach based on local regression and global consistency is proposed for stable PDE identification. Numerical experiments are provided to verify our analysis and demonstrate the performance of the proposed algorithms.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.