{"title":"DeepGR4J: A deep learning hybridization approach for conceptual rainfall-runoff modelling","authors":"Arpit Kapoor , Sahani Pathiraja , Lucy Marshall , Rohitash Chandra","doi":"10.1016/j.envsoft.2023.105831","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the considerable success of deep learning methods in modelling physical processes, they suffer from a variety of issues such as overfitting and lack of interpretability. In hydrology, conceptual rainfall-runoff models are simple yet fast and effective tools to represent the underlying physical processes through lumped storage components. Although conceptual rainfall-runoff models play a vital role in supporting decision-making in water resources management and urban planning, they have limited flexibility to take data into account for the development of robust region-wide models. The combination of deep learning and conceptual models has the potential to address some of the aforementioned limitations. This paper presents a sub-model hybridization of the GR4J rainfall-runoff model with deep learning architectures such as convolutional neural networks (CNN) and long short-term memory (LSTM) networks. The results show that the hybrid models outperform both the base conceptual model as well as the canonical deep neural network architectures in terms of the Nash–Sutcliffe Efficiency (NSE) score across 223 catchments in Australia. We show that our hybrid model provides a significant improvement in predictive performance, particularly in arid catchments, and generalizing better across catchments.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"169 ","pages":"Article 105831"},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815223002177/pdfft?md5=fed4e0da5d005d6b49d32c2518235ffa&pid=1-s2.0-S1364815223002177-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815223002177","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the considerable success of deep learning methods in modelling physical processes, they suffer from a variety of issues such as overfitting and lack of interpretability. In hydrology, conceptual rainfall-runoff models are simple yet fast and effective tools to represent the underlying physical processes through lumped storage components. Although conceptual rainfall-runoff models play a vital role in supporting decision-making in water resources management and urban planning, they have limited flexibility to take data into account for the development of robust region-wide models. The combination of deep learning and conceptual models has the potential to address some of the aforementioned limitations. This paper presents a sub-model hybridization of the GR4J rainfall-runoff model with deep learning architectures such as convolutional neural networks (CNN) and long short-term memory (LSTM) networks. The results show that the hybrid models outperform both the base conceptual model as well as the canonical deep neural network architectures in terms of the Nash–Sutcliffe Efficiency (NSE) score across 223 catchments in Australia. We show that our hybrid model provides a significant improvement in predictive performance, particularly in arid catchments, and generalizing better across catchments.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.