Prediction of the mean transit time using machine learning models based on radiomics features from digital subtraction angiography in moyamoya disease or moyamoya syndrome-a development and validation model study.
{"title":"Prediction of the mean transit time using machine learning models based on radiomics features from digital subtraction angiography in moyamoya disease or moyamoya syndrome-a development and validation model study.","authors":"Kun Qin, Zhige Guo, Chao Peng, Wu Gan, Dong Zhou, Guangzhong Chen","doi":"10.21037/cdt-23-151","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Digital subtraction angiography (DSA) is an important technique for diagnosis of moyamoya disease (MMD) or moyamoya syndrome (MMS), and computed tomography perfusion (CTP) is essential for assessing intracranial blood supply. The aim of this study was to assess whether radiomics features based on images of DSA could predict the mean transit time (MTT; outcome of CTP) using machine learning models.</p><p><strong>Methods: </strong>The DSA images and MTT values of adult patients with MMD or MMS, according to the diagnostic guidelines for MMD, as well as control cases, were retrospectively collected in the Guangdong Provincial People's Hospital between January 2018 and December 2020. A total of 93 features were extracted from the images of each case through 3-dimensional (3D) slicer. After features preprocessing and filtering, 3-4 features were selected by the least absolute shrinkage and selection operator (LASSO) regression algorithm. Prediction models were established using random forest (RF) and support vector machine (SVM) for MTT values. Single-factor receiver operating characteristic (ROC) curve analysis and partial-dependence (PD) profiles were conducted to investigate selected features and prediction models.</p><p><strong>Results: </strong>Our results showed that prediction models based on RF models had the best performance in frontal lobe {area under the curve (AUC) [95% confidence interval (CI)] =1.000 (1.000-1.000)], parietal lobe [AUC (95% CI) =1.000 (1.000-1.000)], and basal ganglia/thalamus [AUC (95% CI) =0.922 (0.797-1.000)] in the test set, whereas the SVM model performed the best in the temporal lobe [AUC (95% CI) =0.962 (0.876-1.000)] in the test set. The AUC values in the test set were greater than 0.9. The PD profiles showed good robustness and consistency.</p><p><strong>Conclusions: </strong>Prediction models based on radiomics features extracted from DSA images demonstrate excellent performance in predicting MTT in patients with MMD or MMS, which may provide guidance for future clinical practice.</p>","PeriodicalId":9592,"journal":{"name":"Cardiovascular diagnosis and therapy","volume":"13 5","pages":"879-892"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628422/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular diagnosis and therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/cdt-23-151","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Digital subtraction angiography (DSA) is an important technique for diagnosis of moyamoya disease (MMD) or moyamoya syndrome (MMS), and computed tomography perfusion (CTP) is essential for assessing intracranial blood supply. The aim of this study was to assess whether radiomics features based on images of DSA could predict the mean transit time (MTT; outcome of CTP) using machine learning models.
Methods: The DSA images and MTT values of adult patients with MMD or MMS, according to the diagnostic guidelines for MMD, as well as control cases, were retrospectively collected in the Guangdong Provincial People's Hospital between January 2018 and December 2020. A total of 93 features were extracted from the images of each case through 3-dimensional (3D) slicer. After features preprocessing and filtering, 3-4 features were selected by the least absolute shrinkage and selection operator (LASSO) regression algorithm. Prediction models were established using random forest (RF) and support vector machine (SVM) for MTT values. Single-factor receiver operating characteristic (ROC) curve analysis and partial-dependence (PD) profiles were conducted to investigate selected features and prediction models.
Results: Our results showed that prediction models based on RF models had the best performance in frontal lobe {area under the curve (AUC) [95% confidence interval (CI)] =1.000 (1.000-1.000)], parietal lobe [AUC (95% CI) =1.000 (1.000-1.000)], and basal ganglia/thalamus [AUC (95% CI) =0.922 (0.797-1.000)] in the test set, whereas the SVM model performed the best in the temporal lobe [AUC (95% CI) =0.962 (0.876-1.000)] in the test set. The AUC values in the test set were greater than 0.9. The PD profiles showed good robustness and consistency.
Conclusions: Prediction models based on radiomics features extracted from DSA images demonstrate excellent performance in predicting MTT in patients with MMD or MMS, which may provide guidance for future clinical practice.
期刊介绍:
The journal ''Cardiovascular Diagnosis and Therapy'' (Print ISSN: 2223-3652; Online ISSN: 2223-3660) accepts basic and clinical science submissions related to Cardiovascular Medicine and Surgery. The mission of the journal is the rapid exchange of scientific information between clinicians and scientists worldwide. To reach this goal, the journal will focus on novel media, using a web-based, digital format in addition to traditional print-version. This includes on-line submission, review, publication, and distribution. The digital format will also allow submission of extensive supporting visual material, both images and video. The website www.thecdt.org will serve as the central hub and also allow posting of comments and on-line discussion. The web-site of the journal will be linked to a number of international web-sites (e.g. www.dxy.cn), which will significantly expand the distribution of its contents.