Insights gained from single-cell analysis of chimeric antigen receptor T-cell immunotherapy in cancer.

IF 16.7 2区 医学 Q1 MEDICINE, GENERAL & INTERNAL Military Medical Research Pub Date : 2023-11-08 DOI:10.1186/s40779-023-00486-4
Lu Tang, Zhong-Pei Huang, Heng Mei, Yu Hu
{"title":"Insights gained from single-cell analysis of chimeric antigen receptor T-cell immunotherapy in cancer.","authors":"Lu Tang, Zhong-Pei Huang, Heng Mei, Yu Hu","doi":"10.1186/s40779-023-00486-4","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in chimeric antigen receptor (CAR)-T cell therapy have significantly improved clinical outcomes of patients with relapsed or refractory hematologic malignancies. However, progress is still hindered as clinical benefit is only available for a fraction of patients. A lack of understanding of CAR-T cell behaviors in vivo at the single-cell level impedes their more extensive application in clinical practice. Mounting evidence suggests that single-cell sequencing techniques can help perfect the receptor design, guide gene-based T cell modification, and optimize the CAR-T manufacturing conditions, and all of them are essential for long-term immunosurveillance and more favorable clinical outcomes. The information generated by employing these methods also potentially informs our understanding of the numerous complex factors that dictate therapeutic efficacy and toxicities. In this review, we discuss the reasons why CAR-T immunotherapy fails in clinical practice and what this field has learned since the milestone of single-cell sequencing technologies. We further outline recent advances in the application of single-cell analyses in CAR-T immunotherapy. Specifically, we provide an overview of single-cell studies focusing on target antigens, CAR-transgene integration, and preclinical research and clinical applications, and then discuss how it will affect the future of CAR-T cell therapy.</p>","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"10 1","pages":"52"},"PeriodicalIF":16.7000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631149/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40779-023-00486-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in chimeric antigen receptor (CAR)-T cell therapy have significantly improved clinical outcomes of patients with relapsed or refractory hematologic malignancies. However, progress is still hindered as clinical benefit is only available for a fraction of patients. A lack of understanding of CAR-T cell behaviors in vivo at the single-cell level impedes their more extensive application in clinical practice. Mounting evidence suggests that single-cell sequencing techniques can help perfect the receptor design, guide gene-based T cell modification, and optimize the CAR-T manufacturing conditions, and all of them are essential for long-term immunosurveillance and more favorable clinical outcomes. The information generated by employing these methods also potentially informs our understanding of the numerous complex factors that dictate therapeutic efficacy and toxicities. In this review, we discuss the reasons why CAR-T immunotherapy fails in clinical practice and what this field has learned since the milestone of single-cell sequencing technologies. We further outline recent advances in the application of single-cell analyses in CAR-T immunotherapy. Specifically, we provide an overview of single-cell studies focusing on target antigens, CAR-transgene integration, and preclinical research and clinical applications, and then discuss how it will affect the future of CAR-T cell therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从癌症嵌合抗原受体T细胞免疫疗法的单细胞分析中获得的见解。
嵌合抗原受体(CAR)-T细胞治疗的进展显著改善了复发或难治性血液系统恶性肿瘤患者的临床结果。然而,进展仍然受到阻碍,因为临床益处仅适用于一小部分患者。缺乏对CAR-T细胞在单细胞水平上的体内行为的理解阻碍了其在临床实践中的更广泛应用。越来越多的证据表明,单细胞测序技术可以帮助完善受体设计、指导基于基因的T细胞修饰和优化CAR-T制造条件,所有这些对于长期免疫监测和更有利的临床结果都至关重要。通过使用这些方法产生的信息也可能为我们理解决定疗效和毒性的众多复杂因素提供信息。在这篇综述中,我们讨论了CAR-T免疫疗法在临床实践中失败的原因,以及自单细胞测序技术的里程碑以来,该领域学到了什么。我们进一步概述了单细胞分析在CAR-T免疫疗法中应用的最新进展。具体而言,我们概述了单细胞研究,重点是靶抗原、CAR转基因整合、临床前研究和临床应用,然后讨论了它将如何影响CAR-T细胞治疗的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Military Medical Research
Military Medical Research Medicine-General Medicine
CiteScore
38.40
自引率
2.80%
发文量
485
审稿时长
8 weeks
期刊介绍: Military Medical Research is an open-access, peer-reviewed journal that aims to share the most up-to-date evidence and innovative discoveries in a wide range of fields, including basic and clinical sciences, translational research, precision medicine, emerging interdisciplinary subjects, and advanced technologies. Our primary focus is on modern military medicine; however, we also encourage submissions from other related areas. This includes, but is not limited to, basic medical research with the potential for translation into practice, as well as clinical research that could impact medical care both in times of warfare and during peacetime military operations.
期刊最新文献
Hans Chinese consume less O2 for muscular work than european-american. Exosome autoantibody biomarkers for detection of lung cancer. International Alliance of Urolithiasis (IAU) consensus on miniaturized percutaneous nephrolithotomy. Mechanism of lactic acidemia-promoted pulmonary endothelial cells death in sepsis: role for CIRP-ZBP1-PANoptosis pathway. Microenvironment-responsive nanomedicines: a promising direction for tissue regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1