Renata Woroniecka, Grzegorz Rymkiewicz, Zbigniew Bystydzienski, Barbara Pienkowska-Grela, Jolanta Rygier, Natalia Malawska, Katarzyna Wojtkowska, Nikolina Goral, Katarzyna Blachnio, Marcin Chmielewski, Magdalena Bartnik-Glaska, Beata Grygalewicz
{"title":"Cytogenomic features of Richter transformation.","authors":"Renata Woroniecka, Grzegorz Rymkiewicz, Zbigniew Bystydzienski, Barbara Pienkowska-Grela, Jolanta Rygier, Natalia Malawska, Katarzyna Wojtkowska, Nikolina Goral, Katarzyna Blachnio, Marcin Chmielewski, Magdalena Bartnik-Glaska, Beata Grygalewicz","doi":"10.1186/s13039-023-00662-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Richter transformation (RT) is the development of aggressive lymphoma in patients with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL). This rare disease is characterised by dismal prognosis. In recent years, there has been a deeper understanding of RT molecular pathogenesis, and disruptions of apoptosis (TP53) and proliferation (CDKN2A, MYC, NOTCH1) has been described as typical aberrations in RT.</p><p><strong>Results: </strong>A single-institution cohort of 33 RT patients were investigated by karyotyping, fluorescence in situ hybridization and single nucleotide polymorphism/copy number (CN) arrays. Most of RTs were typically manifested by diffuse large B-cell lymphoma, not otherwise specified, among the remaining cases one was classified as high-grade B-cell lymphoma with 11q aberrations. The most frequent alterations (40-60% of cases) were represented by MYC rearrangement/gain, deletions of TP53 and CDKN2A, IGH rearrangement and 13q14 deletion. Several other frequent lesions included losses of 14q24.1-q32.33, 7q31.33-q36.3, and gain of 5q35.2. Analysis of 13 CLL/SLL-RT pairs showed that RT arised from the CLL/SLL by acquiring of 10 ~ 12 cytogenetic or CN lesions/case, but without acquisition of loss of heterozygosity regions. Our result affirmed the higher genetic complexity in RT than CLL/SLL and confirmed the linear features of RT clonal evolution as predominant.</p><p><strong>Conclusions: </strong>Cytogenomic profile was concordant with the literature data, however the role of IGH rearrangement, 14q deletion and 5q35.2 gain need to be explored. We anticipate that further characterization of RT lesions will probably facilitate better understanding of the RT clonal evolution.</p>","PeriodicalId":19099,"journal":{"name":"Molecular Cytogenetics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631075/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cytogenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13039-023-00662-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Richter transformation (RT) is the development of aggressive lymphoma in patients with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL). This rare disease is characterised by dismal prognosis. In recent years, there has been a deeper understanding of RT molecular pathogenesis, and disruptions of apoptosis (TP53) and proliferation (CDKN2A, MYC, NOTCH1) has been described as typical aberrations in RT.
Results: A single-institution cohort of 33 RT patients were investigated by karyotyping, fluorescence in situ hybridization and single nucleotide polymorphism/copy number (CN) arrays. Most of RTs were typically manifested by diffuse large B-cell lymphoma, not otherwise specified, among the remaining cases one was classified as high-grade B-cell lymphoma with 11q aberrations. The most frequent alterations (40-60% of cases) were represented by MYC rearrangement/gain, deletions of TP53 and CDKN2A, IGH rearrangement and 13q14 deletion. Several other frequent lesions included losses of 14q24.1-q32.33, 7q31.33-q36.3, and gain of 5q35.2. Analysis of 13 CLL/SLL-RT pairs showed that RT arised from the CLL/SLL by acquiring of 10 ~ 12 cytogenetic or CN lesions/case, but without acquisition of loss of heterozygosity regions. Our result affirmed the higher genetic complexity in RT than CLL/SLL and confirmed the linear features of RT clonal evolution as predominant.
Conclusions: Cytogenomic profile was concordant with the literature data, however the role of IGH rearrangement, 14q deletion and 5q35.2 gain need to be explored. We anticipate that further characterization of RT lesions will probably facilitate better understanding of the RT clonal evolution.
期刊介绍:
Molecular Cytogenetics encompasses all aspects of chromosome biology and the application of molecular cytogenetic techniques in all areas of biology and medicine, including structural and functional organization of the chromosome and nucleus, genome variation, expression and evolution, chromosome abnormalities and genomic variations in medical genetics and tumor genetics.
Molecular Cytogenetics primarily defines a large set of the techniques that operate either with the entire genome or with specific targeted DNA sequences. Topical areas include, but are not limited to:
-Structural and functional organization of chromosome and nucleus-
Genome variation, expression and evolution-
Animal and plant molecular cytogenetics and genomics-
Chromosome abnormalities and genomic variations in clinical genetics-
Applications in preimplantation, pre- and post-natal diagnosis-
Applications in the central nervous system, cancer and haematology research-
Previously unreported applications of molecular cytogenetic techniques-
Development of new techniques or significant enhancements to established techniques.
This journal is a source for numerous scientists all over the world, who wish to improve or introduce molecular cytogenetic techniques into their practice.