Longitudinal metagenomic study reveals the dynamics of fecal antibiotic resistome in pigs throughout the lifetime.

IF 4.9 Q1 MICROBIOLOGY Animal microbiome Pub Date : 2023-11-08 DOI:10.1186/s42523-023-00279-z
Lingyan Ma, Yuanyuan Song, Wentao Lyu, Qu Chen, Xingning Xiao, Yuanxiang Jin, Hua Yang, Wen Wang, Yingping Xiao
{"title":"Longitudinal metagenomic study reveals the dynamics of fecal antibiotic resistome in pigs throughout the lifetime.","authors":"Lingyan Ma, Yuanyuan Song, Wentao Lyu, Qu Chen, Xingning Xiao, Yuanxiang Jin, Hua Yang, Wen Wang, Yingping Xiao","doi":"10.1186/s42523-023-00279-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The dissemination of antibiotic resistance genes (ARGs) poses a substantial threat to environmental safety and human health. Herein, we present a longitudinal paired study across the swine lifetime from birth to market, coupled with metagenomic sequencing to explore the dynamics of ARGs and their health risk in the swine fecal microbiome.</p><p><strong>Results: </strong>We systematically characterized the composition and distribution of ARGs among the different growth stages. In total, 829 ARG subtypes belonging to 21 different ARG types were detected, in which tetracycline, aminoglycoside, and MLS were the most abundant types. Indeed, 134 core ARG subtypes were shared in all stages and displayed a growth stage-associated pattern. Furthermore, the correlation between ARGs, gut microbiota and mobile genetic elements (MGEs) revealed Escherichia coli represented the main carrier of ARGs. We also found that in most cases, the dominant ARGs could be transmitted to progeny piglets, suggesting the potential ARGs generation transmission. Finally, the evaluation of the antibiotic resistance threats provides us some early warning of those high health risk ARGs.</p><p><strong>Conclusions: </strong>Collectively, this relatively more comprehensive study provides a primary overview of ARG profile in swine microbiome across the lifetime and highlights the health risk and the intergenerational spread of ARGs in pig farm.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634126/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-023-00279-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The dissemination of antibiotic resistance genes (ARGs) poses a substantial threat to environmental safety and human health. Herein, we present a longitudinal paired study across the swine lifetime from birth to market, coupled with metagenomic sequencing to explore the dynamics of ARGs and their health risk in the swine fecal microbiome.

Results: We systematically characterized the composition and distribution of ARGs among the different growth stages. In total, 829 ARG subtypes belonging to 21 different ARG types were detected, in which tetracycline, aminoglycoside, and MLS were the most abundant types. Indeed, 134 core ARG subtypes were shared in all stages and displayed a growth stage-associated pattern. Furthermore, the correlation between ARGs, gut microbiota and mobile genetic elements (MGEs) revealed Escherichia coli represented the main carrier of ARGs. We also found that in most cases, the dominant ARGs could be transmitted to progeny piglets, suggesting the potential ARGs generation transmission. Finally, the evaluation of the antibiotic resistance threats provides us some early warning of those high health risk ARGs.

Conclusions: Collectively, this relatively more comprehensive study provides a primary overview of ARG profile in swine microbiome across the lifetime and highlights the health risk and the intergenerational spread of ARGs in pig farm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纵向宏基因组研究揭示了猪一生中粪便抗生素耐药性的动态。
背景:抗生素耐药性基因(ARGs)的传播对环境安全和人类健康构成了重大威胁。在此,我们提出了一项从出生到上市的猪一生的纵向配对研究,结合宏基因组测序,以探索猪粪便微生物组中ARGs的动态及其健康风险。结果:我们系统地描述了ARGs在不同生长阶段的组成和分布。总共检测到829种ARG亚型,属于21种不同的ARG类型,其中四环素、氨基糖苷类和MLS是最丰富的类型。事实上,134个核心ARG亚型在所有阶段都是共享的,并显示出与生长阶段相关的模式。此外,ARGs、肠道微生物群和可移动遗传元件(MGEs)之间的相关性表明,大肠杆菌是ARGs的主要载体。我们还发现,在大多数情况下,显性ARGs可以传播给后代仔猪,这表明ARGs有潜在的世代传播。最后,对抗生素耐药性威胁的评估为我们提供了一些高健康风险ARG的早期预警。结论:总的来说,这项相对更全面的研究提供了猪一生微生物组ARG概况的初步概述,并强调了健康风险和ARG在养猪场的代际传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Diet affects reproductive development and microbiota composition in honey bees. The role of gut microbiota in a generalist, golden snub-nosed monkey, adaptation to geographical diet change. Insights into the occurrence of phylosymbiosis and co-phylogeny in the holobionts of octocorals from the Mediterranean Sea and Red Sea. Programming rumen microbiome development in calves with the anti-methanogenic compound 3-NOP. Ruminant microbiome data are skewed and unFAIR, undermining their usefulness for sustainable production improvement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1