Seonghyun Kang, Jaewook Kim, Yekwang Kim, Juhui Moon, Seonghan Park, Seung-Jong Kim
{"title":"A Novel Tilted-Plane Ergometer System for Subject-Specific Rehabilitation.","authors":"Seonghyun Kang, Jaewook Kim, Yekwang Kim, Juhui Moon, Seonghan Park, Seung-Jong Kim","doi":"10.1109/ICORR58425.2023.10304744","DOIUrl":null,"url":null,"abstract":"<p><p>Immobilization due to various reasons can lead to disuse muscle atrophy. If prolonged, the circumstance is exacerbated and may lead to joint contracture, dysfunction, and long-term sequela. Thus, a balanced exercise regimen is crucial. While able-bodied individuals can perform a variety of exercises, bedridden patients typically resort to exercising primarily with bicycle ergometers. However, since the pedaling trajectory with ergometers is confined to the sagittal plane, muscles responsible for medial-lateral movement and balance are not effectively trained. Furthermore, the direction of joint reaction forces, which is crucial for specific patients with ligament injuries, recurrent dislocations, and medial osteoarthritis, is not well facilitated. Thus, it would be beneficial for patients without full body weight support ability to train ab-/ad-ductor muscles by altering the direction of extrinsic load via ergometers. In this study, we present a novel Tilted-Plane Ergometer and proof-of-concept experiment with one healthy subject. The results suggest that subtle changes in ergometer configurations lead to different movements, joint alignments, and muscle recruitment patterns.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR58425.2023.10304744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Immobilization due to various reasons can lead to disuse muscle atrophy. If prolonged, the circumstance is exacerbated and may lead to joint contracture, dysfunction, and long-term sequela. Thus, a balanced exercise regimen is crucial. While able-bodied individuals can perform a variety of exercises, bedridden patients typically resort to exercising primarily with bicycle ergometers. However, since the pedaling trajectory with ergometers is confined to the sagittal plane, muscles responsible for medial-lateral movement and balance are not effectively trained. Furthermore, the direction of joint reaction forces, which is crucial for specific patients with ligament injuries, recurrent dislocations, and medial osteoarthritis, is not well facilitated. Thus, it would be beneficial for patients without full body weight support ability to train ab-/ad-ductor muscles by altering the direction of extrinsic load via ergometers. In this study, we present a novel Tilted-Plane Ergometer and proof-of-concept experiment with one healthy subject. The results suggest that subtle changes in ergometer configurations lead to different movements, joint alignments, and muscle recruitment patterns.