Continuous Phase Estimation in a Variety of Locomotion Modes Using Adaptive Dynamic Movement Primitives.

Huseyin Eken, Andrea Pergolini, Alessandro Mazzarini, Chiara Livolsi, Ilaria Fagioli, Michele Francesco Penna, Emanuele Gruppioni, Emilio Trigili, Simona Crea, Nicola Vitiello
{"title":"Continuous Phase Estimation in a Variety of Locomotion Modes Using Adaptive Dynamic Movement Primitives.","authors":"Huseyin Eken, Andrea Pergolini, Alessandro Mazzarini, Chiara Livolsi, Ilaria Fagioli, Michele Francesco Penna, Emanuele Gruppioni, Emilio Trigili, Simona Crea, Nicola Vitiello","doi":"10.1109/ICORR58425.2023.10304682","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate gait phase estimation algorithms can be used to synchronize the action of wearable robots to the volitional user movements in real time. Current-day gait phase estimation methods are designed mostly for rhythmic tasks and evaluated in highly controlled walking environments (namely, steady-state walking). Here, we implemented adaptive Dynamic Movement Primitives (aDMP) for continuous real-time phase estimation in the most common locomotion activities of daily living, which are level-ground walking, stair negotiation, and ramp negotiation. The proposed method uses the thigh roll angle and foot-contact information and was tested in real time with five subjects. The estimated phase resulted in an average root-mean-square error of 3.98% ± 1.33% and a final estimation error of 0.60% ± 0.55% with respect to the linear phase. The results of this study constitute a viable groundwork for future phase-based control strategies for lower-limb wearable robots, such as robotic prostheses or exoskeletons.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR58425.2023.10304682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate gait phase estimation algorithms can be used to synchronize the action of wearable robots to the volitional user movements in real time. Current-day gait phase estimation methods are designed mostly for rhythmic tasks and evaluated in highly controlled walking environments (namely, steady-state walking). Here, we implemented adaptive Dynamic Movement Primitives (aDMP) for continuous real-time phase estimation in the most common locomotion activities of daily living, which are level-ground walking, stair negotiation, and ramp negotiation. The proposed method uses the thigh roll angle and foot-contact information and was tested in real time with five subjects. The estimated phase resulted in an average root-mean-square error of 3.98% ± 1.33% and a final estimation error of 0.60% ± 0.55% with respect to the linear phase. The results of this study constitute a viable groundwork for future phase-based control strategies for lower-limb wearable robots, such as robotic prostheses or exoskeletons.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自适应动态运动基元的各种运动模式下的连续相位估计。
精确的步态相位估计算法可以用于实时同步可穿戴机器人的动作和用户的意志运动。目前的步态相位估计方法主要针对有节奏的任务设计,并在高度受控的步行环境(即稳态步行)中进行评估。在这里,我们实现了自适应动态运动原语(aDMP),用于在日常生活中最常见的运动活动中进行连续实时相位估计,这些活动包括平地行走、楼梯协商和坡道协商。所提出的方法使用大腿滚动角度和脚部接触信息,并对五名受试者进行了实时测试。估计的相位导致相对于线性相位的平均均方根误差为3.98%±1.33%,最终估计误差为0.60%±0.55%。这项研究的结果为下肢可穿戴机器人(如机器人假肢或外骨骼)未来基于阶段的控制策略奠定了可行的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Individualized Three-Dimensional Gait Pattern Generator for Lower Limbs Rehabilitation Robots. Individualized Training of Back Muscles Using Iterative Learning Control of a Compliant Balance Board. Influence of Robotic Therapy on Severe Stroke Patients. INSPIIRE - A Modular and Passive Exoskeleton to Investigate Human Walking and Balance. Instrumented Upper Limb Functional Assessment Using a Robotic Exoskeleton: Normative References Intervals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1