{"title":"Continuous Phase Estimation in a Variety of Locomotion Modes Using Adaptive Dynamic Movement Primitives.","authors":"Huseyin Eken, Andrea Pergolini, Alessandro Mazzarini, Chiara Livolsi, Ilaria Fagioli, Michele Francesco Penna, Emanuele Gruppioni, Emilio Trigili, Simona Crea, Nicola Vitiello","doi":"10.1109/ICORR58425.2023.10304682","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate gait phase estimation algorithms can be used to synchronize the action of wearable robots to the volitional user movements in real time. Current-day gait phase estimation methods are designed mostly for rhythmic tasks and evaluated in highly controlled walking environments (namely, steady-state walking). Here, we implemented adaptive Dynamic Movement Primitives (aDMP) for continuous real-time phase estimation in the most common locomotion activities of daily living, which are level-ground walking, stair negotiation, and ramp negotiation. The proposed method uses the thigh roll angle and foot-contact information and was tested in real time with five subjects. The estimated phase resulted in an average root-mean-square error of 3.98% ± 1.33% and a final estimation error of 0.60% ± 0.55% with respect to the linear phase. The results of this study constitute a viable groundwork for future phase-based control strategies for lower-limb wearable robots, such as robotic prostheses or exoskeletons.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2023 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR58425.2023.10304682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate gait phase estimation algorithms can be used to synchronize the action of wearable robots to the volitional user movements in real time. Current-day gait phase estimation methods are designed mostly for rhythmic tasks and evaluated in highly controlled walking environments (namely, steady-state walking). Here, we implemented adaptive Dynamic Movement Primitives (aDMP) for continuous real-time phase estimation in the most common locomotion activities of daily living, which are level-ground walking, stair negotiation, and ramp negotiation. The proposed method uses the thigh roll angle and foot-contact information and was tested in real time with five subjects. The estimated phase resulted in an average root-mean-square error of 3.98% ± 1.33% and a final estimation error of 0.60% ± 0.55% with respect to the linear phase. The results of this study constitute a viable groundwork for future phase-based control strategies for lower-limb wearable robots, such as robotic prostheses or exoskeletons.