Solvent-free and catalyst-free direct alkylation of alkenes†‡

IF 9.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Green Chemistry Pub Date : 2023-08-15 DOI:10.1039/D3GC02685J
Meng-Yao Li, Jiatong Li, Ao Gu, Xiao-Mei Nong, Shuyang Zhai, Zhu-Ying Yue, Chen-Guo Feng, Yingbin Liu and Guo-Qiang Lin
{"title":"Solvent-free and catalyst-free direct alkylation of alkenes†‡","authors":"Meng-Yao Li, Jiatong Li, Ao Gu, Xiao-Mei Nong, Shuyang Zhai, Zhu-Ying Yue, Chen-Guo Feng, Yingbin Liu and Guo-Qiang Lin","doi":"10.1039/D3GC02685J","DOIUrl":null,"url":null,"abstract":"<p >A convenient method for synthesizing aryl-containing trisubstituted alkenes through direct alkylation of alkenes was successfully achieved under solvent-free and catalyst-free conditions. The absence of solvents was found to be crucial in initiating this sequence. Moreover, this protocol stands out due to its minimal waste production and straightforward operation. The radical capture experiment provided evidence for an ionic reaction mechanism.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 18","pages":" 7073-7078"},"PeriodicalIF":9.3000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/gc/d3gc02685j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A convenient method for synthesizing aryl-containing trisubstituted alkenes through direct alkylation of alkenes was successfully achieved under solvent-free and catalyst-free conditions. The absence of solvents was found to be crucial in initiating this sequence. Moreover, this protocol stands out due to its minimal waste production and straightforward operation. The radical capture experiment provided evidence for an ionic reaction mechanism.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无溶剂和无催化剂的烯烃直接烷基化†‡
在无溶剂、无催化剂的条件下,成功地实现了由烯烃直接烷基化合成含芳基三取代烯烃的简便方法。溶剂的缺乏被发现是启动这一序列的关键。此外,该协议因其最小的废物产生和简单的操作而脱颖而出。自由基捕获实验为离子反应机理提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
期刊最新文献
Back cover Measuring green chemistry: methods, models, and metrics Inside back cover Back cover Development of a highly efficient electrocatalytic hydrogenation and dehalogenation system using a flow cell with a Pd tube cathode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1