Robust low-rank learning multi-output regression for incipient sediment motion in sewer pipes

IF 3.5 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES International Journal of Sediment Research Pub Date : 2023-08-30 DOI:10.1016/j.ijsrc.2023.08.004
Mir Jafar Sadegh Safari , Shervin Rahimzadeh Arashloo
{"title":"Robust low-rank learning multi-output regression for incipient sediment motion in sewer pipes","authors":"Mir Jafar Sadegh Safari ,&nbsp;Shervin Rahimzadeh Arashloo","doi":"10.1016/j.ijsrc.2023.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>The existing incipient sediment motion models typically apply conventional regression methods considering either velocity or shear stress. In the current study, incipient sediment motion is analyzed through a simultaneous and joint analysis of velocity and shear stress using the robust low-rank learning (RLRL) multi-output regression technique. Moreover, the experimental data compiled from five different channels are utilized to develop a generic incipient sediment motion model valid for a channel of any cross-sectional shape. The efficiency of the developed method is examined and compared against the available conventional regression models. The experimental results indicate that the RLRL model yields better results than its counterparts. In particular, while cross-section specific models fail to provide accurate estimates for shear stress or velocity for other cross sections, the proposed model provides satisfactory results for all channel shapes. The better performance of the recommended approach can be attributed to the joint modeling of the shear stress and the velocity which is realized by capturing the correlation between these parameters in terms of a low rank output mixing matrix which enhances the prediction performance of the approach.</p></div>","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"38 6","pages":"Pages 859-870"},"PeriodicalIF":3.5000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sediment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001627923000525","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The existing incipient sediment motion models typically apply conventional regression methods considering either velocity or shear stress. In the current study, incipient sediment motion is analyzed through a simultaneous and joint analysis of velocity and shear stress using the robust low-rank learning (RLRL) multi-output regression technique. Moreover, the experimental data compiled from five different channels are utilized to develop a generic incipient sediment motion model valid for a channel of any cross-sectional shape. The efficiency of the developed method is examined and compared against the available conventional regression models. The experimental results indicate that the RLRL model yields better results than its counterparts. In particular, while cross-section specific models fail to provide accurate estimates for shear stress or velocity for other cross sections, the proposed model provides satisfactory results for all channel shapes. The better performance of the recommended approach can be attributed to the joint modeling of the shear stress and the velocity which is realized by capturing the correlation between these parameters in terms of a low rank output mixing matrix which enhances the prediction performance of the approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
污水管道初沉运动的鲁棒低秩学习多输出回归
现有的起动泥沙运动模型通常采用考虑速度或剪切应力的传统回归方法。在目前的研究中,通过使用鲁棒低阶学习(RLRL)多输出回归技术对速度和剪切应力进行同时和联合分析来分析起动泥沙运动。此外,利用从五个不同渠道汇编的实验数据,开发了一个适用于任何横截面形状渠道的通用初期泥沙运动模型。对所开发的方法的效率进行了检验,并与现有的传统回归模型进行了比较。实验结果表明,RLRL模型比其对应模型产生了更好的结果。特别是,虽然特定横截面的模型无法为其他横截面的剪切应力或速度提供准确的估计,但所提出的模型为所有通道形状提供了令人满意的结果。推荐方法的更好性能可归因于剪切应力和速度的联合建模,这是通过根据低阶输出混合矩阵捕获这些参数之间的相关性来实现的,这增强了该方法的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Sediment Research
International Journal of Sediment Research 环境科学-环境科学
CiteScore
6.90
自引率
5.60%
发文量
88
审稿时长
74 days
期刊介绍: International Journal of Sediment Research, the Official Journal of The International Research and Training Center on Erosion and Sedimentation and The World Association for Sedimentation and Erosion Research, publishes scientific and technical papers on all aspects of erosion and sedimentation interpreted in its widest sense. The subject matter is to include not only the mechanics of sediment transport and fluvial processes, but also what is related to geography, geomorphology, soil erosion, watershed management, sedimentology, environmental and ecological impacts of sedimentation, social and economical effects of sedimentation and its assessment, etc. Special attention is paid to engineering problems related to sedimentation and erosion.
期刊最新文献
TOC Quantification of bedload transport in the Hungarian Danube using multiple analysis methods Biogenic “phosphorus” effect of terrestrial lakes and its significance to oil shale during the Carnian period in the late Triassic Potential reuse of fine sediment from hydroelectric dams and recycled concrete sand in road subgrades Response of tenuous clay-polysaccharide flocs to hydrodynamic shearing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1