{"title":"Non-linear curve fitting for modal analysis","authors":"T.J. Chalko , N. Haritos , V. Gershkovich","doi":"10.1016/S0266-9838(96)00016-0","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":100485,"journal":{"name":"Environmental Software","volume":"11 1","pages":"9-18"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0266-9838(96)00016-0","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Software","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266983896000160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
模态分析的非线性曲线拟合
本文讨论了在模态分析应用中广泛采用的曲线拟合技术的不足。介绍了一种新的直接同时模态近似(DSMA)方法,该方法可以显著提高从实际结构的实验测量中重建的特征值和特征向量的精度。该方法采用牛顿迭代技术同时逼近相关结构的所有特征值和特征向量。该方法的一个主要优点是,它最小化了所有可用数据的加权全局最小二乘误差的非线性函数,即使当该数据包含显著的噪声水平和/或当模式间隔非常紧密时,也能够准确地重建模态参数。DSMA算法的概念可以转移到具有非线性曲线拟合要求的其他学科,其中需要估计大量参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。