{"title":"Passing score and length of a mastery test","authors":"Wim J. van der Linden","doi":"10.1016/0191-765X(82)90015-5","DOIUrl":null,"url":null,"abstract":"<div><p>A classical problem in mastery testing is the choice of passing score and test length so that the mastery decisions are optimal. Thsi problem has been addressed several times from a variety of view-points. In this paper the usual indifference zone approach is adopted with a new criterion for optimizing the passing score. It appears that, under the assumption of the binomial error model, this yields a linear relationship between optimal passing score and test length, which subsequently can be used in a simple procedure for optimizing the test length. It is indicated how different losses for both decision errors and a known base rate can be incorporated in the procedure, and how a correction for guessing can be applied. Finally, the results in this paper are related to results obtained in sequential testing and in the latent class approach to mastery testing.</p></div>","PeriodicalId":100510,"journal":{"name":"Evaluation in Education","volume":"5 2","pages":"Pages 149-164"},"PeriodicalIF":0.0000,"publicationDate":"1982-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0191-765X(82)90015-5","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evaluation in Education","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0191765X82900155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
A classical problem in mastery testing is the choice of passing score and test length so that the mastery decisions are optimal. Thsi problem has been addressed several times from a variety of view-points. In this paper the usual indifference zone approach is adopted with a new criterion for optimizing the passing score. It appears that, under the assumption of the binomial error model, this yields a linear relationship between optimal passing score and test length, which subsequently can be used in a simple procedure for optimizing the test length. It is indicated how different losses for both decision errors and a known base rate can be incorporated in the procedure, and how a correction for guessing can be applied. Finally, the results in this paper are related to results obtained in sequential testing and in the latent class approach to mastery testing.