A. Kostenkov, A. Vinokurov, K. Atapin, Y. Solovyeva
{"title":"The Nature of the Emission Spectrum of NGC 7793 P13: Testing the Supercritical Accretion Disk Wind Model","authors":"A. Kostenkov, A. Vinokurov, K. Atapin, Y. Solovyeva","doi":"10.1134/S1990341323700086","DOIUrl":null,"url":null,"abstract":"<p>The optical spectra of ultraluminous X-ray sources (ULXs) show signs of powerful outflows of matter. These outflows are responsible for the formation of a significant portion of optical and ultraviolet emission in ULXs and can either be stellar winds of the donor stars or optically thick outflows (winds) from the surface of supercritical accretion disks. In the latter scenario the outflows are still expected to be similar to stellar winds of massive stars, which allows one to use the same methods for their study based on a comparison of the observed spectra with those simulated within the framework of non-LTE extended atmosphere models. In this paper, we simulate the optical spectrum of the ultraluminous X-ray pulsar NGC 7793 P13, assuming that its emission part is produced in the wind of the supercritical accretion disk. The estimated mass loss rate is about <span>\\(1.4\\times 10^{-5}M_{\\odot}\\)</span> yr<span>\\({}^{-1}\\)</span>. We consider the positive and negative aspects of the model and also discuss the applicability of the concept of supercritical disk winds to NGC 7793 P13 and to another well-known ultraluminous X-ray pulsar, NGC 300 ULX-1.</p>","PeriodicalId":478,"journal":{"name":"Astrophysical Bulletin","volume":"78 3","pages":"395 - 411"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1990341323700086","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The optical spectra of ultraluminous X-ray sources (ULXs) show signs of powerful outflows of matter. These outflows are responsible for the formation of a significant portion of optical and ultraviolet emission in ULXs and can either be stellar winds of the donor stars or optically thick outflows (winds) from the surface of supercritical accretion disks. In the latter scenario the outflows are still expected to be similar to stellar winds of massive stars, which allows one to use the same methods for their study based on a comparison of the observed spectra with those simulated within the framework of non-LTE extended atmosphere models. In this paper, we simulate the optical spectrum of the ultraluminous X-ray pulsar NGC 7793 P13, assuming that its emission part is produced in the wind of the supercritical accretion disk. The estimated mass loss rate is about \(1.4\times 10^{-5}M_{\odot}\) yr\({}^{-1}\). We consider the positive and negative aspects of the model and also discuss the applicability of the concept of supercritical disk winds to NGC 7793 P13 and to another well-known ultraluminous X-ray pulsar, NGC 300 ULX-1.
期刊介绍:
Astrophysical Bulletin is an international peer reviewed journal that publishes the results of original research in various areas of modern astronomy and astrophysics, including observational and theoretical astrophysics, physics of the Sun, radio astronomy, stellar astronomy, extragalactic astronomy, cosmology, and astronomy methods and instrumentation.