P. P. Rakesh Krishnan, P. Arun Kumar, K. Prabhakaran
{"title":"Natural rubber latex as a new binder for slip casting of alumina ceramics","authors":"P. P. Rakesh Krishnan, P. Arun Kumar, K. Prabhakaran","doi":"10.1007/s42464-023-00208-4","DOIUrl":null,"url":null,"abstract":"<div><p>The slip casting of ceramics uses synthetically prepared water-soluble polymers and polymer emulsions as binder to achieve adequate yield stress of the consolidated body and high green strength. Substitution of synthetically prepared binders with a naturally renewable one is highly recommended for environmental friendliness and sustainability. Herein, slip casting of aqueous alumina slurries using natural rubber latex (NRL) binder is studied for the first time. Slurries of high alumina loading (40–55 vol%) at rubber concentrations in the range of 2–8 wt% obtained by mixing a concentrated aqueous alumina powder dispersion and a concentrated NRL exhibit viscosity and yield stress suitable for slip casting. The thickness of the body produced in 1 h from the slurries containing the NRL binder by slip casting in a plaster of Paris mold is three times higher than that produced from a slurry prepared using 2 wt% polyvinyl alcohol (PVA) binder. The slip-cast green bodies after annealing at 200 °C show high strength (3–9.68 MPa) due to cross-linking of rubber. Sintered ceramics prepared from the slip-cast bodies exhibit ~ 97% theoretical density (T.D) with an average grain size of 1.8 μm. NRL binder-based slip casting is capable of producing sintered alumina crucibles of wall thickness as low as 1.2 mm. NRL can be an eco-friendly and sustainable candidate binder for the slip casting of ceramic materials.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"26 4","pages":"291 - 301"},"PeriodicalIF":1.2000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rubber Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s42464-023-00208-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The slip casting of ceramics uses synthetically prepared water-soluble polymers and polymer emulsions as binder to achieve adequate yield stress of the consolidated body and high green strength. Substitution of synthetically prepared binders with a naturally renewable one is highly recommended for environmental friendliness and sustainability. Herein, slip casting of aqueous alumina slurries using natural rubber latex (NRL) binder is studied for the first time. Slurries of high alumina loading (40–55 vol%) at rubber concentrations in the range of 2–8 wt% obtained by mixing a concentrated aqueous alumina powder dispersion and a concentrated NRL exhibit viscosity and yield stress suitable for slip casting. The thickness of the body produced in 1 h from the slurries containing the NRL binder by slip casting in a plaster of Paris mold is three times higher than that produced from a slurry prepared using 2 wt% polyvinyl alcohol (PVA) binder. The slip-cast green bodies after annealing at 200 °C show high strength (3–9.68 MPa) due to cross-linking of rubber. Sintered ceramics prepared from the slip-cast bodies exhibit ~ 97% theoretical density (T.D) with an average grain size of 1.8 μm. NRL binder-based slip casting is capable of producing sintered alumina crucibles of wall thickness as low as 1.2 mm. NRL can be an eco-friendly and sustainable candidate binder for the slip casting of ceramic materials.
期刊介绍:
The Journal of Rubber Research is devoted to both natural and synthetic rubbers, as well as to related disciplines. The scope of the journal encompasses all aspects of rubber from the core disciplines of biology, physics and chemistry, as well as economics. As a specialised field, rubber science includes within its niche a vast potential of innovative and value-added research areas yet to be explored. This peer reviewed publication focuses on the results of active experimental research and authoritative reviews on all aspects of rubber science.
The Journal of Rubber Research welcomes research on:
the upstream, including crop management, crop improvement and protection, and biotechnology;
the midstream, including processing and effluent management;
the downstream, including rubber engineering and product design, advanced rubber technology, latex science and technology, and chemistry and materials exploratory;
economics, including the economics of rubber production, consumption, and market analysis.
The Journal of Rubber Research serves to build a collective knowledge base while communicating information and validating the quality of research within the discipline, and bringing together work from experts in rubber science and related disciplines.
Scientists in both academia and industry involved in researching and working with all aspects of rubber will find this journal to be both source of information and a gateway for their own publications.