Bayesian Estimation and Model Selection for the Spatiotemporal Autoregressive Model with Autoregressive Conditional Heteroscedasticity Errors

Pub Date : 2023-11-08 DOI:10.1007/s10255-023-1096-x
Bing Su, Fu-kang Zhu, Ju Huang
{"title":"Bayesian Estimation and Model Selection for the Spatiotemporal Autoregressive Model with Autoregressive Conditional Heteroscedasticity Errors","authors":"Bing Su,&nbsp;Fu-kang Zhu,&nbsp;Ju Huang","doi":"10.1007/s10255-023-1096-x","DOIUrl":null,"url":null,"abstract":"<div><p>The spatial and spatiotemporal autoregressive conditional heteroscedasticity (STARCH) models receive increasing attention. In this paper, we introduce a spatiotemporal autoregressive (STAR) model with STARCH errors, which can capture the spatiotemporal dependence in mean and variance simultaneously. The Bayesian estimation and model selection are considered for our model. By Monte Carlo simulations, it is shown that the Bayesian estimator performs better than the corresponding maximum-likelihood estimator, and the Bayesian model selection can select out the true model in most times. Finally, two empirical examples are given to illustrate the superiority of our models in fitting those data.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1096-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The spatial and spatiotemporal autoregressive conditional heteroscedasticity (STARCH) models receive increasing attention. In this paper, we introduce a spatiotemporal autoregressive (STAR) model with STARCH errors, which can capture the spatiotemporal dependence in mean and variance simultaneously. The Bayesian estimation and model selection are considered for our model. By Monte Carlo simulations, it is shown that the Bayesian estimator performs better than the corresponding maximum-likelihood estimator, and the Bayesian model selection can select out the true model in most times. Finally, two empirical examples are given to illustrate the superiority of our models in fitting those data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
具有自回归条件异方差误差的时空自回归模型的Bayes估计与模型选择
空间和时空自回归条件异方差(STARCH)模型越来越受到关注。在本文中,我们引入了一个具有STARCH误差的时空自回归(STAR)模型,该模型可以同时捕捉均值和方差的时空相关性。我们的模型考虑了贝叶斯估计和模型选择。通过蒙特卡洛模拟,表明贝叶斯估计器的性能优于相应的最大似然估计器,并且贝叶斯模型选择在大多数情况下都可以选择出真实的模型。最后,给出了两个实证例子来说明我们的模型在拟合这些数据方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1