{"title":"The pressure reduction property of silicone rubber reinforced by warp-knitted spacer fabric","authors":"Zixiang Zhou, Si Chen","doi":"10.1007/s42464-023-00204-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, a new type of flexible cushioning material was fabricated from silicone rubber reinforced with different lengths and contents of flax short fibres and warp-knitted spacer fabric (FSR-WSF). The pressure reduction property and energy absorption capability of the FSR-WSF were thoroughly studied based on the plane compressive test. Furthermore, the obliquity model was utilized to characterize the dispersion of WSFs with different structures. The results demonstrated that a larger modulus and a smaller fracture strain were obtained for silicone rubber reinforced with 1.26% short flax staple fibres that were 2.5 mm in length. Additionally, a remarkable pressure reduction property was exhibited by an FSR-WSF containing 2.16% 3.5 mm short flax fibres, where the values of <span>\\(\\mathrm{csc}\\alpha\\)</span> and <span>\\(\\mathrm{csc}\\beta\\)</span> were 1.05 and 1.57, respectively. The results illustrated that the pressure reduction property of the FSR-WSF was the result of coupling between its internal components. These findings could contribute significantly to the development of composites reinforced by warp-knitted spacer fabrics.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"26 4","pages":"261 - 269"},"PeriodicalIF":1.2000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rubber Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s42464-023-00204-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, a new type of flexible cushioning material was fabricated from silicone rubber reinforced with different lengths and contents of flax short fibres and warp-knitted spacer fabric (FSR-WSF). The pressure reduction property and energy absorption capability of the FSR-WSF were thoroughly studied based on the plane compressive test. Furthermore, the obliquity model was utilized to characterize the dispersion of WSFs with different structures. The results demonstrated that a larger modulus and a smaller fracture strain were obtained for silicone rubber reinforced with 1.26% short flax staple fibres that were 2.5 mm in length. Additionally, a remarkable pressure reduction property was exhibited by an FSR-WSF containing 2.16% 3.5 mm short flax fibres, where the values of \(\mathrm{csc}\alpha\) and \(\mathrm{csc}\beta\) were 1.05 and 1.57, respectively. The results illustrated that the pressure reduction property of the FSR-WSF was the result of coupling between its internal components. These findings could contribute significantly to the development of composites reinforced by warp-knitted spacer fabrics.
期刊介绍:
The Journal of Rubber Research is devoted to both natural and synthetic rubbers, as well as to related disciplines. The scope of the journal encompasses all aspects of rubber from the core disciplines of biology, physics and chemistry, as well as economics. As a specialised field, rubber science includes within its niche a vast potential of innovative and value-added research areas yet to be explored. This peer reviewed publication focuses on the results of active experimental research and authoritative reviews on all aspects of rubber science.
The Journal of Rubber Research welcomes research on:
the upstream, including crop management, crop improvement and protection, and biotechnology;
the midstream, including processing and effluent management;
the downstream, including rubber engineering and product design, advanced rubber technology, latex science and technology, and chemistry and materials exploratory;
economics, including the economics of rubber production, consumption, and market analysis.
The Journal of Rubber Research serves to build a collective knowledge base while communicating information and validating the quality of research within the discipline, and bringing together work from experts in rubber science and related disciplines.
Scientists in both academia and industry involved in researching and working with all aspects of rubber will find this journal to be both source of information and a gateway for their own publications.