Higher-Order Harmonics in Hexagonal Graphene Quantum Dots

IF 1 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Journal of Experimental and Theoretical Physics Pub Date : 2023-10-26 DOI:10.1134/S1063776123090121
Kh. V. Sedrakian, A. G. Ghazaryan, B. R. Avchyan, Q. S. Poghosyan, T. M. Markosyan
{"title":"Higher-Order Harmonics in Hexagonal Graphene Quantum Dots","authors":"Kh. V. Sedrakian,&nbsp;A. G. Ghazaryan,&nbsp;B. R. Avchyan,&nbsp;Q. S. Poghosyan,&nbsp;T. M. Markosyan","doi":"10.1134/S1063776123090121","DOIUrl":null,"url":null,"abstract":"<p>We have considered the high-order harmonic generation in plane graphene quantum dots of hexagonal shape by the independent quasiparticle approximation-tight binding model. We have investigated how such a nonlinear effect is affected by a strong optical wave field, quantum dot typical band gap and lateral size, and dephasing processes. The equation of motion for the density matrix is solved by performing the time integration with the eight-order Runge–Kutta algorithm. If the optical wave frequency is much less than the quantum dot intrinsic band gap, the main aspects of multiphoton high harmonic emission in quantum dots are revealed. In such case dependence of the cutoff photon energy on the strength of the optical pump wave is almost linear. But when the wave frequency is comparable to the bandgap of the quantum dot, the cutoff photon energy shows saturation behavior with an increase in the wave field strength.</p>","PeriodicalId":629,"journal":{"name":"Journal of Experimental and Theoretical Physics","volume":"137 3","pages":"395 - 403"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental and Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063776123090121","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We have considered the high-order harmonic generation in plane graphene quantum dots of hexagonal shape by the independent quasiparticle approximation-tight binding model. We have investigated how such a nonlinear effect is affected by a strong optical wave field, quantum dot typical band gap and lateral size, and dephasing processes. The equation of motion for the density matrix is solved by performing the time integration with the eight-order Runge–Kutta algorithm. If the optical wave frequency is much less than the quantum dot intrinsic band gap, the main aspects of multiphoton high harmonic emission in quantum dots are revealed. In such case dependence of the cutoff photon energy on the strength of the optical pump wave is almost linear. But when the wave frequency is comparable to the bandgap of the quantum dot, the cutoff photon energy shows saturation behavior with an increase in the wave field strength.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
六边形石墨烯量子点中的高阶谐波
我们通过独立的准粒子近似紧束缚模型考虑了六边形平面石墨烯量子点中的高次谐波产生。我们研究了这种非线性效应如何受到强光波场、量子点典型带隙和横向尺寸以及去相位过程的影响。密度矩阵的运动方程是通过使用八阶龙格-库塔算法进行时间积分来求解的。如果光波频率远小于量子点本征带隙,则揭示了量子点多光子高次谐波发射的主要方面。在这种情况下,截止光子能量对光泵浦波强度的依赖性几乎是线性的。但是,当波频率与量子点的带隙相当时,随着波场强度的增加,截止光子能量表现出饱和行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
9.10%
发文量
130
审稿时长
3-6 weeks
期刊介绍: Journal of Experimental and Theoretical Physics is one of the most influential physics research journals. Originally based on Russia, this international journal now welcomes manuscripts from all countries in the English or Russian language. It publishes original papers on fundamental theoretical and experimental research in all fields of physics: from solids and liquids to elementary particles and astrophysics.
期刊最新文献
Thermoelectric Power and Hall Effect in Correlated Metals and Doped Mott–Hubbard Insulators: DMFT Approximation Search for a New Internucleon Interaction Using Neutron Powder Diffraction Spin Pumping by a Moving Domain Wall at the Interface of an Antiferromagnetic Insulator and a Two-Dimensional Metal Determination of the Strain Tensor and the Elastic Stress Fields in a Diamond Plate with a High Bending Curvature Using Local Laue Diffraction Data Magnetic Interparticle Interactions and Superparamagnetic Blocking of Powder Systems of Biogenic Ferrihydrite Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1