{"title":"Two-party Quantum Key Agreement with Six-particle Entangled States Against Collective Noise","authors":"She-Xiang Jiang, Lei Fang, Xian-Jin Fang","doi":"10.1007/s10773-023-05414-9","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum key agreement (QKA) is an advanced technique that allows multiple parties to share a secret key through cooperation. At present, most QKA protocols have the problems of weak anti-noise ability and low qubit efficiency. In this paper, two improved two-party QKA protocols are proposed using two sets of special logical qubits, which are immune to the collective noise. The main idea of these two protocols is that first, through the measurement correlation of the six-particle entangled states, the communication parties can fairly build a common key. Then, decoy logical qubits and delayed measurement technology are employed to prevent eavesdropping in quantum channels. Security analysis indicates that both protocols are unconditionally secure and capable of resisting internal and external attacks. In addition, compared with existing protocols, both protocols improve the efficiency because they transmit longer qubits.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"62 11","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-023-05414-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum key agreement (QKA) is an advanced technique that allows multiple parties to share a secret key through cooperation. At present, most QKA protocols have the problems of weak anti-noise ability and low qubit efficiency. In this paper, two improved two-party QKA protocols are proposed using two sets of special logical qubits, which are immune to the collective noise. The main idea of these two protocols is that first, through the measurement correlation of the six-particle entangled states, the communication parties can fairly build a common key. Then, decoy logical qubits and delayed measurement technology are employed to prevent eavesdropping in quantum channels. Security analysis indicates that both protocols are unconditionally secure and capable of resisting internal and external attacks. In addition, compared with existing protocols, both protocols improve the efficiency because they transmit longer qubits.
期刊介绍:
International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.