{"title":"Three-dimensional multicellular biomaterial platforms for biomedical application","authors":"Jianxin Hao, Chen Qin, Chengtie Wu","doi":"10.1002/idm2.12122","DOIUrl":null,"url":null,"abstract":"<p>The three-dimensional (3D) multicellular platforms prepared by cells or biomaterials have been widely applied in biomedical fields for the regeneration of complex tissues, the exploration of cell crosstalk, and the establishment of tissue physiological and pathological models. Compared with the traditional 2D culture methods, the 3D multicellular platforms are easier to adjust the components and structures of extracellular matrix (ECM) because of the synthesis of ECM by cells and the use of biomaterials. Moreover, the 3D multicellular platforms also can customize the cell distribution and precisely design micro and macro structures of the systems. Based on these typical advantages of 3D multicellular platforms and their increasingly important position in the biomedical field, this review summarizes the present 3D multicellular platforms. Herein, current 3D multicellular platforms are divided into two major types: scaffold-free and scaffold-based 3D multicellular platforms. The specific characteristics and applications of different types of 3D multicellular platforms are thoroughly introduced to help readers understand how different models affect and regulate cell behaviors and inspire researchers on how to select and design suitable 3D multicellular platforms according to different application scenarios.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"2 5","pages":"714-734"},"PeriodicalIF":24.5000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The three-dimensional (3D) multicellular platforms prepared by cells or biomaterials have been widely applied in biomedical fields for the regeneration of complex tissues, the exploration of cell crosstalk, and the establishment of tissue physiological and pathological models. Compared with the traditional 2D culture methods, the 3D multicellular platforms are easier to adjust the components and structures of extracellular matrix (ECM) because of the synthesis of ECM by cells and the use of biomaterials. Moreover, the 3D multicellular platforms also can customize the cell distribution and precisely design micro and macro structures of the systems. Based on these typical advantages of 3D multicellular platforms and their increasingly important position in the biomedical field, this review summarizes the present 3D multicellular platforms. Herein, current 3D multicellular platforms are divided into two major types: scaffold-free and scaffold-based 3D multicellular platforms. The specific characteristics and applications of different types of 3D multicellular platforms are thoroughly introduced to help readers understand how different models affect and regulate cell behaviors and inspire researchers on how to select and design suitable 3D multicellular platforms according to different application scenarios.