Max Kleiman-Weiner, Joshua B. Tenenbaum, Penghui Zhou
{"title":"Non-parametric Bayesian inference of strategies in repeated games","authors":"Max Kleiman-Weiner, Joshua B. Tenenbaum, Penghui Zhou","doi":"10.1111/ectj.12112","DOIUrl":null,"url":null,"abstract":"Inferring underlying cooperative and competitive strategies from human behaviour in repeated games is important for accurately characterizing human behaviour and understanding how people reason strategically. Finite automata, a bounded model of computation, have been extensively used to compactly represent strategies for these games and are a standard tool in game theoretic analyses. However, inference over these strategies in repeated games is challenging since the number of possible strategies grows exponentially with the number of repetitions yet behavioural data are often sparse and noisy. As a result, previous approaches start by specifying a finite hypothesis space of automata that does not allow for flexibility. This limitation hinders the discovery of novel strategies that may be used by humans but are not anticipated a priori by current theory. Here we present a new probabilistic model for strategy inference in repeated games by exploiting non‐parametric Bayesian modelling. With simulated data, we show that the model is effective at inferring the true strategy rapidly and from limited data, which leads to accurate predictions of future behaviour. When applied to experimental data of human behaviour in a repeated prisoner's dilemma, we uncover strategies of varying complexity and diversity.","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":"21 3","pages":"298-315"},"PeriodicalIF":2.9000,"publicationDate":"2018-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12112","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12112","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1
Abstract
Inferring underlying cooperative and competitive strategies from human behaviour in repeated games is important for accurately characterizing human behaviour and understanding how people reason strategically. Finite automata, a bounded model of computation, have been extensively used to compactly represent strategies for these games and are a standard tool in game theoretic analyses. However, inference over these strategies in repeated games is challenging since the number of possible strategies grows exponentially with the number of repetitions yet behavioural data are often sparse and noisy. As a result, previous approaches start by specifying a finite hypothesis space of automata that does not allow for flexibility. This limitation hinders the discovery of novel strategies that may be used by humans but are not anticipated a priori by current theory. Here we present a new probabilistic model for strategy inference in repeated games by exploiting non‐parametric Bayesian modelling. With simulated data, we show that the model is effective at inferring the true strategy rapidly and from limited data, which leads to accurate predictions of future behaviour. When applied to experimental data of human behaviour in a repeated prisoner's dilemma, we uncover strategies of varying complexity and diversity.
期刊介绍:
The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.