An efficient deep learning algorithm for the segmentation of cardiac ventricles

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Imaging Systems and Technology Pub Date : 2023-07-11 DOI:10.1002/ima.22929
Ciyamala Kushbu Sadhanandan, Inbamalar Tharcis Mariapushpam, Sudha Suresh
{"title":"An efficient deep learning algorithm for the segmentation of cardiac ventricles","authors":"Ciyamala Kushbu Sadhanandan, Inbamalar Tharcis Mariapushpam, Sudha Suresh","doi":"10.1002/ima.22929","DOIUrl":null,"url":null,"abstract":"For the effective diagnosis of cardio vascular disease (CVD), anatomical characteristics of the heart must be examined, which depends on segmenting the cardiac tissues of interest and then classifying them into appropriate pathological groups. In recent years, deep learning (DL)‐based computer aided design (CAD) segmentation has been employed to automate the segmentation process. Despite the evolution of several DL methods, they still fail due to the shape variation of the heart in patients and the availability of a limited amount of data. This paper proposes an effective Saliency and Active Contour‐based Attention UNet3+ algorithm to segment the ventricles of the heart, which is a challenging task for most researchers, especially with an irregularly shaped right ventricle (RV) that varies over cardiac phases. The algorithm outperforms other state‐of‐the‐art methods in DC metrics, which proves its efficiency in automating the segmentation process.","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"33 6","pages":"2044-2060"},"PeriodicalIF":3.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.22929","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

For the effective diagnosis of cardio vascular disease (CVD), anatomical characteristics of the heart must be examined, which depends on segmenting the cardiac tissues of interest and then classifying them into appropriate pathological groups. In recent years, deep learning (DL)‐based computer aided design (CAD) segmentation has been employed to automate the segmentation process. Despite the evolution of several DL methods, they still fail due to the shape variation of the heart in patients and the availability of a limited amount of data. This paper proposes an effective Saliency and Active Contour‐based Attention UNet3+ algorithm to segment the ventricles of the heart, which is a challenging task for most researchers, especially with an irregularly shaped right ventricle (RV) that varies over cardiac phases. The algorithm outperforms other state‐of‐the‐art methods in DC metrics, which proves its efficiency in automating the segmentation process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种有效的心室分割深度学习算法
为了有效诊断心血管疾病(CVD),必须检查心脏的解剖特征,这取决于分割感兴趣的心脏组织,然后将其分为适当的病理组。近年来,基于深度学习(DL)的计算机辅助设计(CAD)分割已被用于自动化分割过程。尽管有几种DL方法的发展,但由于患者心脏的形状变化和有限的数据可用性,它们仍然失败了。本文提出了一种有效的基于显著性和主动轮廓的注意力UNet3+算法来分割心室,这对大多数研究人员来说是一项具有挑战性的任务,尤其是对于随着心时相变化的形状不规则的右心室(RV)。该算法在DC度量方面优于其他最先进的方法,证明了其在自动分割过程中的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
期刊最新文献
Unveiling Cancer: A Data-Driven Approach for Early Identification and Prediction Using F-RUS-RF Model Predicting the Early Detection of Breast Cancer Using Hybrid Machine Learning Systems and Thermographic Imaging CATNet: A Cross Attention and Texture-Aware Network for Polyp Segmentation VMC-UNet: A Vision Mamba-CNN U-Net for Tumor Segmentation in Breast Ultrasound Image Suppression of the Tissue Component With the Total Least-Squares Algorithm to Improve Second Harmonic Imaging of Ultrasound Contrast Agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1