Non-parametric inference on (conditional) quantile differences and interquantile ranges, using L-statistics

IF 2.9 4区 经济学 Q1 ECONOMICS Econometrics Journal Pub Date : 2017-06-15 DOI:10.1111/ectj.12095
Matt Goldman, David M. Kaplan
{"title":"Non-parametric inference on (conditional) quantile differences and interquantile ranges, using L-statistics","authors":"Matt Goldman,&nbsp;David M. Kaplan","doi":"10.1111/ectj.12095","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We provide novel, high-order accurate methods for non-parametric inference on quantile differences between two populations in both unconditional and conditional settings. These quantile differences correspond to (conditional) quantile treatment effects under (conditional) independence of a binary treatment and potential outcomes. Our methods use the probability integral transform and a Dirichlet (rather than Gaussian) reference distribution to pick appropriate <i>L</i>-statistics as confidence interval endpoints, achieving high-order accuracy. Using a similar approach, we also propose confidence intervals/sets for vectors of quantiles, interquantile ranges and differences of linear combinations of quantiles. In the conditional setting, when smoothing over continuous covariates, optimal bandwidth and coverage probability rates are derived for all methods. Simulations show that the new confidence intervals have a favourable combination of robust accuracy and short length compared with existing approaches. Detailed steps for confidence interval construction are provided in online Appendix E as supporting information, and code for all methods, simulations and empirical examples is provided.</p></div>","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":"21 2","pages":"136-169"},"PeriodicalIF":2.9000,"publicationDate":"2017-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12095","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12095","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 5

Abstract

We provide novel, high-order accurate methods for non-parametric inference on quantile differences between two populations in both unconditional and conditional settings. These quantile differences correspond to (conditional) quantile treatment effects under (conditional) independence of a binary treatment and potential outcomes. Our methods use the probability integral transform and a Dirichlet (rather than Gaussian) reference distribution to pick appropriate L-statistics as confidence interval endpoints, achieving high-order accuracy. Using a similar approach, we also propose confidence intervals/sets for vectors of quantiles, interquantile ranges and differences of linear combinations of quantiles. In the conditional setting, when smoothing over continuous covariates, optimal bandwidth and coverage probability rates are derived for all methods. Simulations show that the new confidence intervals have a favourable combination of robust accuracy and short length compared with existing approaches. Detailed steps for confidence interval construction are provided in online Appendix E as supporting information, and code for all methods, simulations and empirical examples is provided.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用L统计量对(条件)分位数差异和分位数间范围进行非参数推断
我们提供了新的、高阶精确的方法,用于在无条件和条件设置下对两个群体之间的分位数差异进行非参数推断。这些分位数差异对应于二元治疗和潜在结果(条件)独立性下的(条件)分位数治疗效果。我们的方法使用概率积分变换和狄利克雷(而不是高斯)参考分布来选择适当的L统计量作为置信区间端点,从而实现高阶精度。使用类似的方法,我们还提出了分位数向量、分位数间范围和分位数线性组合差的置信区间/集。在条件设置中,当对连续协变量进行平滑时,导出了所有方法的最佳带宽和覆盖概率率。仿真表明,与现有方法相比,新的置信区间具有鲁棒精度和短长度的良好组合。在线附录E中提供了置信区间构建的详细步骤作为支持信息,并提供了所有方法、模拟和经验示例的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
期刊最新文献
The Vector Error Correction Index Model: Representation, Estimation and Identification Double Robustness for Complier Parameters and a Semiparametric Test for Complier Characteristics Revealing priors from posteriors with an application to inflation forecasting in the UK Penalized quasi-likelihood estimation and model selection with parameters on the boundary of the parameter space Identifying the elasticity of substitution with biased technical change - a structural panel GMM estimator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1