Kaitlyn M. Sarlo Davila, Paola Boggiatto, Steven Olsen, John D. Lippolis, Brian A. Crooker, Ellie J. Putz
{"title":"Effect of selection genotype on immune response to Brucella abortus RB51 in Holstein cattle","authors":"Kaitlyn M. Sarlo Davila, Paola Boggiatto, Steven Olsen, John D. Lippolis, Brian A. Crooker, Ellie J. Putz","doi":"10.1111/age.13372","DOIUrl":null,"url":null,"abstract":"<p>Genetic selection for milk production traits in US Holsteins has affected numerous genes associated with reproduction and immunity. This study compares the transcriptomic response of peripheral blood mononuclear cells to an in vitro <i>Brucella abortus</i> strain RB51 (RB51) bacterial challenge between contemporary Holsteins and Holsteins that have not been selected for milk production traits since the mid-1960s. Total RNA was extracted from peripheral blood mononuclear cells from four contemporary and four unselected lactating, primiparous cows following 24-h incubation with or without stimulation with RB51 bacteria. RNA was sequenced and reads analyzed using tools from galaxy.scinet.usda.gov. A total of 412 differentially expressed genes (false discovery rate <i>p</i> < 0.05, log fold change > |1|) were identified. The upregulated genes (genes with higher expression in contemporary than unselected cattle) were enriched for 19 terms/pathways, including alanine, aspartate, and glutamate metabolism, indicating a cellular stress response. Downregulated genes (genes with higher expression in unselected than contemporary cows) were enriched for 37 terms/pathways, representing diverse immune responses, including natural killer cell-mediated immunity, interferon-γ production, negative regulation of interleukin-10 production, and cytokine receptor activity indicating a broad immune response with an emphasis on immune defense. These results provide evidence that differences exist between the two genotypes in response to in vitro bacterial challenge. This suggests that contemporary cows, genetically selected for milk production, may have reduced immune function, including limitations in response to intracellular bacteria.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/age.13372","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/age.13372","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic selection for milk production traits in US Holsteins has affected numerous genes associated with reproduction and immunity. This study compares the transcriptomic response of peripheral blood mononuclear cells to an in vitro Brucella abortus strain RB51 (RB51) bacterial challenge between contemporary Holsteins and Holsteins that have not been selected for milk production traits since the mid-1960s. Total RNA was extracted from peripheral blood mononuclear cells from four contemporary and four unselected lactating, primiparous cows following 24-h incubation with or without stimulation with RB51 bacteria. RNA was sequenced and reads analyzed using tools from galaxy.scinet.usda.gov. A total of 412 differentially expressed genes (false discovery rate p < 0.05, log fold change > |1|) were identified. The upregulated genes (genes with higher expression in contemporary than unselected cattle) were enriched for 19 terms/pathways, including alanine, aspartate, and glutamate metabolism, indicating a cellular stress response. Downregulated genes (genes with higher expression in unselected than contemporary cows) were enriched for 37 terms/pathways, representing diverse immune responses, including natural killer cell-mediated immunity, interferon-γ production, negative regulation of interleukin-10 production, and cytokine receptor activity indicating a broad immune response with an emphasis on immune defense. These results provide evidence that differences exist between the two genotypes in response to in vitro bacterial challenge. This suggests that contemporary cows, genetically selected for milk production, may have reduced immune function, including limitations in response to intracellular bacteria.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.