A single-cell atlas of immunocytes in the spleen of a mouse model of Wiskott-Aldrich syndrome

IF 3.7 4区 医学 Q2 CELL BIOLOGY Cellular immunology Pub Date : 2023-11-01 DOI:10.1016/j.cellimm.2023.104783
Fangfang Liang , Cheng Peng , Xianze Luo , Linlin Wang , Yanyan Huang , Le Yin , Luming Yue , Jun Yang , Xiaodong Zhao
{"title":"A single-cell atlas of immunocytes in the spleen of a mouse model of Wiskott-Aldrich syndrome","authors":"Fangfang Liang ,&nbsp;Cheng Peng ,&nbsp;Xianze Luo ,&nbsp;Linlin Wang ,&nbsp;Yanyan Huang ,&nbsp;Le Yin ,&nbsp;Luming Yue ,&nbsp;Jun Yang ,&nbsp;Xiaodong Zhao","doi":"10.1016/j.cellimm.2023.104783","DOIUrl":null,"url":null,"abstract":"<div><p>Wiskott-Aldrich syndrome (WAS) is a disorder characterized by rare X-linked genetic immune deficiency with mutations in the <em>Was</em> gene, which is specifically expressed in hematopoietic cells. The spleen plays a major role in hematopoiesis and red blood cell clearance. However, to date, comprehensive analyses of the spleen in wild-type (WT) and WASp-deficient (WAS-KO) mice, especially at the transcriptome level, have not been reported. In this study, single-cell RNA sequencing (scRNA-seq) was adopted to identify various types of immune cells and investigate the mechanisms underlying immune deficiency. We identified 30 clusters and 10 major cell subtypes among 11,269 cells; these cell types included B cells, T cells, dendritic cells (DCs), natural killer (NK) cells, monocytes, macrophages, granulocytes, stem cells and erythrocytes. Moreover, we evaluated gene expression differences among cell subtypes, identified differentially expressed genes (DEGs), and performed enrichment analyses to identify the reasons for the dysfunction in these different cell populations in WAS. Furthermore, some key genes were identified based on a comparison of the DEGs in each cell type involved in specific and nonspecific immune responses, and further analysis showed that these key genes were previously undiscovered pathology-related genes in WAS-KO mice. In summary, we present a landscape of immune cells in the spleen of WAS-KO mice based on detailed data obtained at single-cell resolution. These unprecedented data revealed the transcriptional characteristics of specific and nonspecific immune cells, and the key genes were identified, laying a foundation for future studies of WAS, especially studies into novel and underexplored mechanisms that may improve gene therapies for WAS.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"393 ","pages":"Article 104783"},"PeriodicalIF":3.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008874923001223","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Wiskott-Aldrich syndrome (WAS) is a disorder characterized by rare X-linked genetic immune deficiency with mutations in the Was gene, which is specifically expressed in hematopoietic cells. The spleen plays a major role in hematopoiesis and red blood cell clearance. However, to date, comprehensive analyses of the spleen in wild-type (WT) and WASp-deficient (WAS-KO) mice, especially at the transcriptome level, have not been reported. In this study, single-cell RNA sequencing (scRNA-seq) was adopted to identify various types of immune cells and investigate the mechanisms underlying immune deficiency. We identified 30 clusters and 10 major cell subtypes among 11,269 cells; these cell types included B cells, T cells, dendritic cells (DCs), natural killer (NK) cells, monocytes, macrophages, granulocytes, stem cells and erythrocytes. Moreover, we evaluated gene expression differences among cell subtypes, identified differentially expressed genes (DEGs), and performed enrichment analyses to identify the reasons for the dysfunction in these different cell populations in WAS. Furthermore, some key genes were identified based on a comparison of the DEGs in each cell type involved in specific and nonspecific immune responses, and further analysis showed that these key genes were previously undiscovered pathology-related genes in WAS-KO mice. In summary, we present a landscape of immune cells in the spleen of WAS-KO mice based on detailed data obtained at single-cell resolution. These unprecedented data revealed the transcriptional characteristics of specific and nonspecific immune cells, and the key genes were identified, laying a foundation for future studies of WAS, especially studies into novel and underexplored mechanisms that may improve gene therapies for WAS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wiskott-Aldrich综合征小鼠模型脾脏中免疫细胞的单细胞图谱。
Wiskott-Aldrich综合征(WAS)是一种以罕见的X连锁遗传性免疫缺陷为特征的疾病,WAS基因突变在造血细胞中特异性表达。脾脏在造血和清除红细胞方面起着重要作用。然而,到目前为止,尚未报道对野生型(WT)和WASp缺陷型(WAS-KO)小鼠脾脏的全面分析,特别是在转录组水平上。在本研究中,采用单细胞RNA测序(scRNA-seq)来鉴定各种类型的免疫细胞,并研究免疫缺陷的潜在机制。我们在11269个细胞中鉴定了30个簇和10个主要细胞亚型;这些细胞类型包括B细胞、T细胞、树突状细胞(DC)、自然杀伤细胞(NK)、单核细胞、巨噬细胞、粒细胞、干细胞和红细胞。此外,我们评估了细胞亚型之间的基因表达差异,鉴定了差异表达基因(DEG),并进行了富集分析,以确定WAS中这些不同细胞群体功能障碍的原因。此外,根据参与特异性和非特异性免疫反应的每种细胞类型中的DEG的比较,鉴定了一些关键基因,进一步分析表明,这些关键基因是WAS-KO小鼠中先前未发现的病理学相关基因。总之,我们基于以单细胞分辨率获得的详细数据,展示了WAS-KO小鼠脾脏中免疫细胞的情况。这些前所未有的数据揭示了特异性和非特异性免疫细胞的转录特征,并鉴定了关键基因,为未来的WAS研究奠定了基础,特别是对可能改善WAS基因治疗的新的和未充分探索的机制的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular immunology
Cellular immunology 生物-免疫学
CiteScore
8.20
自引率
2.30%
发文量
102
审稿时长
30 days
期刊介绍: Cellular Immunology publishes original investigations concerned with the immunological activities of cells in experimental or clinical situations. The scope of the journal encompasses the broad area of in vitro and in vivo studies of cellular immune responses. Purely clinical descriptive studies are not considered. Research Areas include: • Antigen receptor sites • Autoimmunity • Delayed-type hypersensitivity or cellular immunity • Immunologic deficiency states and their reconstitution • Immunologic surveillance and tumor immunity • Immunomodulation • Immunotherapy • Lymphokines and cytokines • Nonantibody immunity • Parasite immunology • Resistance to intracellular microbial and viral infection • Thymus and lymphocyte immunobiology • Transplantation immunology • Tumor immunity.
期刊最新文献
Immunomodulation by galectin-9: Distinct role in T cell populations, current therapeutic avenues and future potential. Ubiquitination and degradation of MHC-II by Tim-3 inhibits antiviral immunity Gastrodenol suppresses NLRP3/GSDMD mediated pyroptosis and ameliorates inflammatory diseases Complement system component 3 deficiency modulates the phenotypic profile of murine macrophages Drug screening identifies pyrrolidinedithiocarbamate ammonium ameliorating DSS-induced mouse ulcerative colitis via suppressing Th17 differentiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1