{"title":"Mechanisms of Chemosensory Transduction in the Carotid Body.","authors":"Nikolai E Lazarov, Dimitrinka Y Atanasova","doi":"10.1007/978-3-031-44757-0_5","DOIUrl":null,"url":null,"abstract":"<p><p>The mammalian carotid body (CB) is a polymodal chemoreceptor, which is activated by blood-borne stimuli, most notably hypoxia, hypercapnia and acidosis, thus ensuring an appropriate cellular response to changes in physical and chemical parameters of the blood. The glomus cells are considered the CB chemosensory cells and the initial site of chemoreceptor transduction. However, the molecular mechanisms by which they detect changes in blood chemical levels and how these changes lead to transmitter release are not yet well understood. Chemotransduction mechanisms are by far best described for oxygen and acid/carbon dioxide sensing. A few testable hypotheses have been postulated including a direct interaction of oxygen with ion channels in the glomus cells (membrane hypothesis), an indirect interface by a reversible ligand like a heme (metabolic hypothesis), or even a functional interaction between putative oxygen sensors (chemosome hypothesis) or the interaction of lactate with a highly expressed in the CB atypical olfactory receptor, Olfr78, (endocrine model). It is also suggested that sensory transduction in the CB is uniquely dependent on the actions and interactions of gaseous transmitters. Apparently, oxygen sensing does not utilize a single mechanism, and later observations have given strong support to a unified membrane model of chemotransduction.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"237 ","pages":"49-62"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Anatomy Embryology and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/978-3-031-44757-0_5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
The mammalian carotid body (CB) is a polymodal chemoreceptor, which is activated by blood-borne stimuli, most notably hypoxia, hypercapnia and acidosis, thus ensuring an appropriate cellular response to changes in physical and chemical parameters of the blood. The glomus cells are considered the CB chemosensory cells and the initial site of chemoreceptor transduction. However, the molecular mechanisms by which they detect changes in blood chemical levels and how these changes lead to transmitter release are not yet well understood. Chemotransduction mechanisms are by far best described for oxygen and acid/carbon dioxide sensing. A few testable hypotheses have been postulated including a direct interaction of oxygen with ion channels in the glomus cells (membrane hypothesis), an indirect interface by a reversible ligand like a heme (metabolic hypothesis), or even a functional interaction between putative oxygen sensors (chemosome hypothesis) or the interaction of lactate with a highly expressed in the CB atypical olfactory receptor, Olfr78, (endocrine model). It is also suggested that sensory transduction in the CB is uniquely dependent on the actions and interactions of gaseous transmitters. Apparently, oxygen sensing does not utilize a single mechanism, and later observations have given strong support to a unified membrane model of chemotransduction.
期刊介绍:
"Advances in Anatomy, Embryology and Cell Biology" presents critical reviews on all topical fields of normal and experimental anatomy including cell biology. The multi-perspective presentation of morphological aspects of basic biological phenomen in the human constitutes the main focus of the series. The contributions re-evaluate the latest findings and show ways for further research.