Amanda Cavalcante Pereira Pinheiro, Olívia Vieira Aires, Mariana Rossi Carneiro Gasperini, Leonardo Custódio de Lima, Carlos Alberto Kenji Shimokawa, Míriam Lacalle Turbino
{"title":"The effect of tooth bleaching using violet LED (405-410 nm) on the properties of resin-based composites.","authors":"Amanda Cavalcante Pereira Pinheiro, Olívia Vieira Aires, Mariana Rossi Carneiro Gasperini, Leonardo Custódio de Lima, Carlos Alberto Kenji Shimokawa, Míriam Lacalle Turbino","doi":"10.1016/j.pdpdt.2023.103883","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The objective of this study was to evaluate the effect of bleaching techniques, including or not the use of violet light (405-410 nm), on resin-based composites' color, surface roughness, nanohardness, and elastic modulus.</p><p><strong>Methods: </strong>Ninety-six disk-shaped specimens (12 mm x 2 mm; n = 12) were prepared using Filtek Z350 XT (Z350) and IPS Empress Direct (ED) resin-based composites. After 24 h, specimens were stained in red wine for 28 days. After staining, specimens were divided into four experimental groups: 40 % Hydrogen Peroxide (HP); Violet Light (VL); 40 % Hydrogen Peroxide associated with Violet Light (HP+VL), and a control group - no treatment (NT). Specimens were evaluated at six experimental times: initial (24 h after light curing); after staining and after the 1st, 2nd, 3rd, and 4th bleaching sessions regarding the color change (ΔE<sub>00</sub>, L*, a*, b*, and WI<sub>D</sub>); roughness (Ra), nanohardness and elastic modulus (GPa). Two-way analysis of variance for repeated measures was performed (α=0.05 %).</p><p><strong>Results: </strong>There was a statistically significant difference between staining and the 1st bleaching session for all ED groups (p<0.05). After the last bleaching session, there were no differences between the experimental and the control groups of both resin-based composites. Bleaching using violet light did not change the roughness, nanohardness and elastic modulus of the tested resin-based composites (p>0.05).</p><p><strong>Conclusions: </strong>Although hydrogen peroxide and violet light remove pigments from resin-based composites without affecting their surface roughness, nanohardness, and elastic modulus, the color change was similar to the one obtained by immersion in distilled water.</p>","PeriodicalId":94170,"journal":{"name":"Photodiagnosis and photodynamic therapy","volume":" ","pages":"103883"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photodiagnosis and photodynamic therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.pdpdt.2023.103883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The objective of this study was to evaluate the effect of bleaching techniques, including or not the use of violet light (405-410 nm), on resin-based composites' color, surface roughness, nanohardness, and elastic modulus.
Methods: Ninety-six disk-shaped specimens (12 mm x 2 mm; n = 12) were prepared using Filtek Z350 XT (Z350) and IPS Empress Direct (ED) resin-based composites. After 24 h, specimens were stained in red wine for 28 days. After staining, specimens were divided into four experimental groups: 40 % Hydrogen Peroxide (HP); Violet Light (VL); 40 % Hydrogen Peroxide associated with Violet Light (HP+VL), and a control group - no treatment (NT). Specimens were evaluated at six experimental times: initial (24 h after light curing); after staining and after the 1st, 2nd, 3rd, and 4th bleaching sessions regarding the color change (ΔE00, L*, a*, b*, and WID); roughness (Ra), nanohardness and elastic modulus (GPa). Two-way analysis of variance for repeated measures was performed (α=0.05 %).
Results: There was a statistically significant difference between staining and the 1st bleaching session for all ED groups (p<0.05). After the last bleaching session, there were no differences between the experimental and the control groups of both resin-based composites. Bleaching using violet light did not change the roughness, nanohardness and elastic modulus of the tested resin-based composites (p>0.05).
Conclusions: Although hydrogen peroxide and violet light remove pigments from resin-based composites without affecting their surface roughness, nanohardness, and elastic modulus, the color change was similar to the one obtained by immersion in distilled water.