Data-driven human model estimation for realtime motion capture

Le Su , Lianjun Liao , Wenpeng Zhai , Shihong Xia
{"title":"Data-driven human model estimation for realtime motion capture","authors":"Le Su ,&nbsp;Lianjun Liao ,&nbsp;Wenpeng Zhai ,&nbsp;Shihong Xia","doi":"10.1016/j.jvlc.2018.05.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, we present a practicable method to estimate individual 3D human model in a low cost multi-view realtime 3D human motion capture system. The key idea is: using human </span>geometric model<span> database and human motion database to establish geometric priors and pose prior model; when given the geometric prior, pose prior and a standard template geometry model, the individual human body model and its embedded skeleton can be estimated from the 3D point cloud captured from multiple depth cameras. Because of the introduction of the global prior model of body pose and shapes into a unified nonlinear optimization problem, the accuracy of geometric model estimation is significantly improved. The experiments on the synthesized data set with noise or without noise and the real data set captured from multiple depth cameras show that the estimation results of our method are more reasonable and accurate than the classical methods, and our method is better noise-immunity. The proposed new individual 3D geometric model estimation method is suitable for online realtime human motion tracking system.</span></p></div>","PeriodicalId":54754,"journal":{"name":"Journal of Visual Languages and Computing","volume":"48 ","pages":"Pages 10-18"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jvlc.2018.05.001","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Languages and Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045926X17302781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we present a practicable method to estimate individual 3D human model in a low cost multi-view realtime 3D human motion capture system. The key idea is: using human geometric model database and human motion database to establish geometric priors and pose prior model; when given the geometric prior, pose prior and a standard template geometry model, the individual human body model and its embedded skeleton can be estimated from the 3D point cloud captured from multiple depth cameras. Because of the introduction of the global prior model of body pose and shapes into a unified nonlinear optimization problem, the accuracy of geometric model estimation is significantly improved. The experiments on the synthesized data set with noise or without noise and the real data set captured from multiple depth cameras show that the estimation results of our method are more reasonable and accurate than the classical methods, and our method is better noise-immunity. The proposed new individual 3D geometric model estimation method is suitable for online realtime human motion tracking system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于实时运动捕捉的数据驱动人体模型估计
在本文中,我们提出了一种在低成本的多视图实时三维人体运动捕捉系统中估计个体三维人体模型的实用方法。其关键思想是:利用人体几何模型数据库和人体运动数据库建立几何先验和姿态先验模型;当给定几何先验、姿态先验和标准模板几何模型时,可以根据从多个深度相机捕获的3D点云来估计个体人体模型及其嵌入骨架。由于将身体姿态和形状的全局先验模型引入到一个统一的非线性优化问题中,几何模型估计的精度显著提高。在有噪声或无噪声的合成数据集和多台深度相机拍摄的真实数据集上的实验表明,该方法的估计结果比经典方法更合理、更准确,并且具有更好的抗噪声性。所提出的新的个体三维几何模型估计方法适用于在线实时人体运动跟踪系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Visual Languages and Computing
Journal of Visual Languages and Computing 工程技术-计算机:软件工程
CiteScore
1.62
自引率
0.00%
发文量
0
审稿时长
26.8 weeks
期刊介绍: The Journal of Visual Languages and Computing is a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of visual languages and its implication to the art of computing. The journal publishes research papers, state-of-the-art surveys, and review articles in all aspects of visual languages.
期刊最新文献
Editorial Board Error recovery in parsing expression grammars through labeled failures and its implementation based on a parsing machine Visual augmentation of source code editors: A systematic mapping study Optimizing type-specific instrumentation on the JVM with reflective supertype information Qualitative representation of spatio-temporal knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1