HybridVis: An adaptive hybrid-scale visualization of multivariate graphs

Yuhua Liu , Changbo Wang , Peng Ye , Kang Zhang
{"title":"HybridVis: An adaptive hybrid-scale visualization of multivariate graphs","authors":"Yuhua Liu ,&nbsp;Changbo Wang ,&nbsp;Peng Ye ,&nbsp;Kang Zhang","doi":"10.1016/j.jvlc.2017.03.008","DOIUrl":null,"url":null,"abstract":"<div><p>Existing network visualizations support hierarchical exploration, which rely on user interactions to create and modify graph hierarchies based on the patterns in the data attributes. It will take a relatively long time for users to identify the impact of different attributes on the cluster structure. To address this problem, this paper proposes a visual analytical approach, called HybridVis, creating an interactive layout to reveal clusters of obvious characteristics on one or more attributes at different scales. HybridVis can help people gain social insight and better understand the roles of attributes within a cluster. First, an approximate optimal graph hierarchy based on an energy model is created, considering both data attributes and relationships among data items. Then a layout algorithm and a level-dependent perceptual view for multi-scale graphs are proposed to show the attribute-driven graph hierarchy. Several views, which interact with each other, are designed in HybridVis, including a graphical view of the relationships among clusters; a cluster tree revealing the cluster scales and the details of attributes on parallel coordinates augmented with histograms and interactions. From the meaningful and globally approximate optimal abstraction, users can navigate a large multivariate graph with an overview+detail to explore and rapidly find the potential correlations between the graph structure and the attributes of data items. Finally, experiments using two real world data sets are performed to demonstrate the effectiveness of our methods.</p></div>","PeriodicalId":54754,"journal":{"name":"Journal of Visual Languages and Computing","volume":"41 ","pages":"Pages 100-110"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jvlc.2017.03.008","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Languages and Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045926X16301392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 5

Abstract

Existing network visualizations support hierarchical exploration, which rely on user interactions to create and modify graph hierarchies based on the patterns in the data attributes. It will take a relatively long time for users to identify the impact of different attributes on the cluster structure. To address this problem, this paper proposes a visual analytical approach, called HybridVis, creating an interactive layout to reveal clusters of obvious characteristics on one or more attributes at different scales. HybridVis can help people gain social insight and better understand the roles of attributes within a cluster. First, an approximate optimal graph hierarchy based on an energy model is created, considering both data attributes and relationships among data items. Then a layout algorithm and a level-dependent perceptual view for multi-scale graphs are proposed to show the attribute-driven graph hierarchy. Several views, which interact with each other, are designed in HybridVis, including a graphical view of the relationships among clusters; a cluster tree revealing the cluster scales and the details of attributes on parallel coordinates augmented with histograms and interactions. From the meaningful and globally approximate optimal abstraction, users can navigate a large multivariate graph with an overview+detail to explore and rapidly find the potential correlations between the graph structure and the attributes of data items. Finally, experiments using two real world data sets are performed to demonstrate the effectiveness of our methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HybridVis:一种多变量图的自适应混合尺度可视化
现有的网络可视化支持分层探索,它依赖于用户交互来基于数据属性中的模式创建和修改图形层次结构。用户需要相对较长的时间来识别不同属性对集群结构的影响。为了解决这个问题,本文提出了一种称为HybridVis的视觉分析方法,该方法创建了一个交互式布局,以在不同尺度上显示一个或多个属性上的明显特征集群。HybridVis可以帮助人们获得社会洞察力,更好地理解集群中属性的作用。首先,考虑数据属性和数据项之间的关系,建立了基于能量模型的近似最优图层次结构。然后提出了多尺度图的布局算法和层次相关感知视图,以显示属性驱动的图层次结构。HybridVis中设计了几个相互作用的视图,包括集群之间关系的图形视图;一个聚类树,显示了平行坐标上的聚类规模和属性细节,并添加了直方图和交互。从有意义的全局近似最优抽象中,用户可以浏览具有概览+细节的大型多元图,以探索并快速找到图结构与数据项属性之间的潜在相关性。最后,使用两个真实世界的数据集进行了实验,以证明我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Visual Languages and Computing
Journal of Visual Languages and Computing 工程技术-计算机:软件工程
CiteScore
1.62
自引率
0.00%
发文量
0
审稿时长
26.8 weeks
期刊介绍: The Journal of Visual Languages and Computing is a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of visual languages and its implication to the art of computing. The journal publishes research papers, state-of-the-art surveys, and review articles in all aspects of visual languages.
期刊最新文献
Editorial Board Error recovery in parsing expression grammars through labeled failures and its implementation based on a parsing machine Visual augmentation of source code editors: A systematic mapping study Optimizing type-specific instrumentation on the JVM with reflective supertype information Qualitative representation of spatio-temporal knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1