Assessment of nano-QSPR models of organic contaminant absorption by carbon nanotubes for ecological impact studies

Alla P. Toropova, Andrey A. Toropov
{"title":"Assessment of nano-QSPR models of organic contaminant absorption by carbon nanotubes for ecological impact studies","authors":"Alla P. Toropova,&nbsp;Andrey A. Toropov","doi":"10.1016/j.md.2016.03.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>Adsorption of organic contaminants on carbon nanotubes is a critical ecological criterion. Consequently, a predictive model for this endpoint is useful from the point of view of ecological risk assessment. Quantitative Structure–Property Relationships (QSPRs) built by the CORAL software package (</span><span>http://www.insilico.eu/coral</span><svg><path></path></svg>) are used to develop predictive models for adsorption (log<!--> <em>K</em><sub>∞</sub>) of organic contaminants by multi-walled carbon nanotubes (MWCNTs). The statistical characteristics of a CORAL model for external validation are: <em>n</em> <!-->=<!--> <!-->30; <em>r</em><sup>2</sup> <!-->=<!--> <!-->0.8878; and RMSE<!--> <!-->=<!--> <!-->0.475 (mg/g). The probabilistic scheme of the definition of the domain of applicability for the CORAL models are suggested and the practical aspects of using the CORAL software are discussed.</p></div>","PeriodicalId":100888,"journal":{"name":"Materials Discovery","volume":"4 ","pages":"Pages 22-28"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.md.2016.03.003","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Discovery","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352924516300047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Adsorption of organic contaminants on carbon nanotubes is a critical ecological criterion. Consequently, a predictive model for this endpoint is useful from the point of view of ecological risk assessment. Quantitative Structure–Property Relationships (QSPRs) built by the CORAL software package (http://www.insilico.eu/coral) are used to develop predictive models for adsorption (log K) of organic contaminants by multi-walled carbon nanotubes (MWCNTs). The statistical characteristics of a CORAL model for external validation are: n = 30; r2 = 0.8878; and RMSE = 0.475 (mg/g). The probabilistic scheme of the definition of the domain of applicability for the CORAL models are suggested and the practical aspects of using the CORAL software are discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于生态影响研究的碳纳米管吸收有机污染物的纳米QSPR模型的评估
有机污染物在碳纳米管上的吸附是一个重要的生态标准。因此,从生态风险评估的角度来看,该终点的预测模型是有用的。CORAL软件包构建的定量结构-性质关系(QSPR)(http://www.insilico.eu/coral)用于建立多壁碳纳米管(MWCNTs)对有机污染物吸附(log K∞)的预测模型。用于外部验证的CORAL模型的统计特征为:n=30;r2=0.8878;RMSE=0.475(mg/g)。提出了CORAL模型适用范围定义的概率方案,并讨论了使用CORAL软件的实际方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of MG AZ31 twin activation with strain: A machine learning study An implementation of ICME in materials information exchanging interfaces Microwave-assisted synthesis, characterization and photoluminescence interaction studies of undoped, Zr2+, Rh3+ and Pd2+ doped ZnS quantum dots Experimental and theoretical tools for corrosion inhibition study of mild steel in aqueous hydrochloric acid solution by new indanones derivatives Mathematical analysis on the effect of tin on mechanical, electrical and thermal properties in magnesium-tin alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1