COMBO: An efficient Bayesian optimization library for materials science

Tsuyoshi Ueno , Trevor David Rhone , Zhufeng Hou , Teruyasu Mizoguchi , Koji Tsuda
{"title":"COMBO: An efficient Bayesian optimization library for materials science","authors":"Tsuyoshi Ueno ,&nbsp;Trevor David Rhone ,&nbsp;Zhufeng Hou ,&nbsp;Teruyasu Mizoguchi ,&nbsp;Koji Tsuda","doi":"10.1016/j.md.2016.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>In many subfields of chemistry and physics, numerous attempts have been made to accelerate scientific discovery using data-driven experimental design algorithms. Among them, Bayesian optimization has been proven to be an effective tool. A standard implementation (e.g., scikit-learn), however, can accommodate only small training data. We designed an efficient protocol for Bayesian optimization that employs Thompson sampling, random feature maps, one-rank Cholesky update and automatic hyperparameter tuning, and implemented it as an open-source python library called COMBO (COMmon Bayesian Optimization library). Promising results using COMBO to determine the atomic structure of a crystalline interface are presented. COMBO is available at <span>https://github.com/tsudalab/combo</span><svg><path></path></svg>.</p></div>","PeriodicalId":100888,"journal":{"name":"Materials Discovery","volume":"4 ","pages":"Pages 18-21"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.md.2016.04.001","citationCount":"227","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Discovery","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352924516300035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 227

Abstract

In many subfields of chemistry and physics, numerous attempts have been made to accelerate scientific discovery using data-driven experimental design algorithms. Among them, Bayesian optimization has been proven to be an effective tool. A standard implementation (e.g., scikit-learn), however, can accommodate only small training data. We designed an efficient protocol for Bayesian optimization that employs Thompson sampling, random feature maps, one-rank Cholesky update and automatic hyperparameter tuning, and implemented it as an open-source python library called COMBO (COMmon Bayesian Optimization library). Promising results using COMBO to determine the atomic structure of a crystalline interface are presented. COMBO is available at https://github.com/tsudalab/combo.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COMBO:一个有效的材料科学贝叶斯优化库
在化学和物理学的许多子领域,已经进行了许多尝试,使用数据驱动的实验设计算法来加速科学发现。其中,贝叶斯优化已被证明是一种有效的工具。然而,标准实现(例如scikit learn)只能容纳少量的训练数据。我们设计了一个有效的贝叶斯优化协议,该协议采用了Thompson采样、随机特征图、一阶Cholesky更新和自动超参数调整,并将其实现为一个名为COMBO(COMmon贝叶斯优化库)的开源python库。给出了使用COMBO确定晶体界面原子结构的有希望的结果。COMBO可在https://github.com/tsudalab/combo.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of MG AZ31 twin activation with strain: A machine learning study An implementation of ICME in materials information exchanging interfaces Microwave-assisted synthesis, characterization and photoluminescence interaction studies of undoped, Zr2+, Rh3+ and Pd2+ doped ZnS quantum dots Experimental and theoretical tools for corrosion inhibition study of mild steel in aqueous hydrochloric acid solution by new indanones derivatives Mathematical analysis on the effect of tin on mechanical, electrical and thermal properties in magnesium-tin alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1