Pattern discovery: A progressive visual analytic design to support categorical data analysis

Hanqing Zhao , Huijun Zhang , Yan Liu , Yongzhen Zhang , Xiaolong (Luke) Zhang
{"title":"Pattern discovery: A progressive visual analytic design to support categorical data analysis","authors":"Hanqing Zhao ,&nbsp;Huijun Zhang ,&nbsp;Yan Liu ,&nbsp;Yongzhen Zhang ,&nbsp;Xiaolong (Luke) Zhang","doi":"10.1016/j.jvlc.2017.05.004","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>When using data-mining tools to analyze big data, users often need tools to support the understanding of individual data attributes and control the analysis progress. This requires the integration of </span>data-mining algorithms with interactive tools to manipulate data and analytical process. This is where visual analytics can help. More than simple visualization of a dataset or some computation results, visual analytics provides users an environment to iteratively explore different inputs or parameters and see the corresponding results. In this research, we explore a design of progressive visual analytics to support the analysis of </span>categorical data with a data-mining algorithm, Apriori. Our study focuses on executing data mining techniques step-by-step and showing intermediate result at every stage to facilitate sense-making. Our design, called Pattern Discovery Tool, targets for a medical dataset. Starting with visualization of data properties and immediate feedback of users’ inputs or adjustments, Pattern Discovery Tool could help users detect interesting patterns and factors effectively and efficiently. Afterward, further analyses such as statistical methods could be conducted to test those possible theories.</p></div>","PeriodicalId":54754,"journal":{"name":"Journal of Visual Languages and Computing","volume":"43 ","pages":"Pages 42-49"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jvlc.2017.05.004","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Languages and Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045926X16301732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 8

Abstract

When using data-mining tools to analyze big data, users often need tools to support the understanding of individual data attributes and control the analysis progress. This requires the integration of data-mining algorithms with interactive tools to manipulate data and analytical process. This is where visual analytics can help. More than simple visualization of a dataset or some computation results, visual analytics provides users an environment to iteratively explore different inputs or parameters and see the corresponding results. In this research, we explore a design of progressive visual analytics to support the analysis of categorical data with a data-mining algorithm, Apriori. Our study focuses on executing data mining techniques step-by-step and showing intermediate result at every stage to facilitate sense-making. Our design, called Pattern Discovery Tool, targets for a medical dataset. Starting with visualization of data properties and immediate feedback of users’ inputs or adjustments, Pattern Discovery Tool could help users detect interesting patterns and factors effectively and efficiently. Afterward, further analyses such as statistical methods could be conducted to test those possible theories.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模式发现:一种支持分类数据分析的渐进视觉分析设计
在使用数据挖掘工具分析大数据时,用户往往需要工具来支持对单个数据属性的理解,并控制分析进度。这需要将数据挖掘算法与交互式工具相结合,以操纵数据和分析过程。这就是视觉分析可以提供帮助的地方。视觉分析不仅仅是数据集或某些计算结果的简单可视化,它还为用户提供了一个迭代探索不同输入或参数并查看相应结果的环境。在这项研究中,我们探索了一种渐进视觉分析的设计,以支持使用数据挖掘算法Apriori对分类数据的分析。我们的研究重点是逐步执行数据挖掘技术,并在每个阶段显示中间结果,以便于理解。我们的设计称为模式发现工具,目标是医学数据集。从数据属性的可视化和用户输入或调整的即时反馈开始,模式发现工具可以帮助用户有效地检测感兴趣的模式和因素。之后,可以进行进一步的分析,如统计方法,以检验这些可能的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Visual Languages and Computing
Journal of Visual Languages and Computing 工程技术-计算机:软件工程
CiteScore
1.62
自引率
0.00%
发文量
0
审稿时长
26.8 weeks
期刊介绍: The Journal of Visual Languages and Computing is a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of visual languages and its implication to the art of computing. The journal publishes research papers, state-of-the-art surveys, and review articles in all aspects of visual languages.
期刊最新文献
Editorial Board Error recovery in parsing expression grammars through labeled failures and its implementation based on a parsing machine Visual augmentation of source code editors: A systematic mapping study Optimizing type-specific instrumentation on the JVM with reflective supertype information Qualitative representation of spatio-temporal knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1