Prediction of optical band gap of β-(AlxGa1-x)2O3 using material informatics

Edward Swinnich, Yash Jayeshbhai Dave, E. Bruce Pitman, Scott Broderick, Baishakhi Mazumder, Jung-Hun Seo
{"title":"Prediction of optical band gap of β-(AlxGa1-x)2O3 using material informatics","authors":"Edward Swinnich,&nbsp;Yash Jayeshbhai Dave,&nbsp;E. Bruce Pitman,&nbsp;Scott Broderick,&nbsp;Baishakhi Mazumder,&nbsp;Jung-Hun Seo","doi":"10.1016/j.md.2018.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the optical band gap of β-(Al<sub>x</sub>Ga<sub>1-x</sub>)<sub>2</sub>O<sub>3</sub><span> versus the Al composition x is predicted using principal component regression and a Gaussian stochastic process. Properties were sourced from other mature Al-alloyed compound semiconductors to form a band gap model. It is found that the electronic band gap, the thermal conductivity, and the Al composition have the greatest influences on the optical band gap. A final relation is generated from a hybrid informatics approach combining information gained from multiple models. The optical band gap of β-(Al</span><sub>x</sub>Ga<sub>1-x</sub>)<sub>2</sub>O<sub>3</sub> versus the Al composition is predicted and agrees well with measured optical band gap.</p></div>","PeriodicalId":100888,"journal":{"name":"Materials Discovery","volume":"11 ","pages":"Pages 1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.md.2018.06.001","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Discovery","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352924518300103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this study, the optical band gap of β-(AlxGa1-x)2O3 versus the Al composition x is predicted using principal component regression and a Gaussian stochastic process. Properties were sourced from other mature Al-alloyed compound semiconductors to form a band gap model. It is found that the electronic band gap, the thermal conductivity, and the Al composition have the greatest influences on the optical band gap. A final relation is generated from a hybrid informatics approach combining information gained from multiple models. The optical band gap of β-(AlxGa1-x)2O3 versus the Al composition is predicted and agrees well with measured optical band gap.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用材料信息学预测β-(AlxGa1-x)2O3的光学带隙
在本研究中,使用主成分回归和高斯随机过程预测了β-(AlxGa1-x)2O3的光学带隙与Al组成x的关系。特性来源于其他成熟的铝合金化合物半导体,以形成带隙模型。研究发现,电子带隙、热导率和Al成分对光学带隙的影响最大。最后的关系是由混合信息学方法产生的,该方法结合了从多个模型获得的信息。预测了β-(AlxGa1-x)2O3的光学带隙与Al组成的关系,并与测量的光学带间隙吻合良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of MG AZ31 twin activation with strain: A machine learning study An implementation of ICME in materials information exchanging interfaces Microwave-assisted synthesis, characterization and photoluminescence interaction studies of undoped, Zr2+, Rh3+ and Pd2+ doped ZnS quantum dots Experimental and theoretical tools for corrosion inhibition study of mild steel in aqueous hydrochloric acid solution by new indanones derivatives Mathematical analysis on the effect of tin on mechanical, electrical and thermal properties in magnesium-tin alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1