{"title":"Visual analysis of user-driven association rule mining","authors":"Wei Chen , Cong Xie , Pingping Shang , Qunsheng Peng","doi":"10.1016/j.jvlc.2017.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>Association rules have been widely used for detecting relations between attribute-value pairs of categorical datasets. Existing solutions of mining interesting association rules are based on the support-confidence theory. However, it is non-trivial for the user to understand and modify the rules or the results of intermediate steps in the mining process, because the interestingness of rules might differ largely for various tasks and users. In this paper we reinforce conventional association rule mining process by mapping the entire process into a visualization assisted loop, with which the user workload for modulating parameters and mining rules is reduced, and the mining efficiency is greatly improved. A hierarchical matrix-based visualization technique is proposed for the user to explore the measure value and the intermediate results of association rules. We also design a set of visual exploration tools to support interactively inspection and manipulation of mining process. The effectiveness and usability of our approach is demonstrated with two scenarios.</p></div>","PeriodicalId":54754,"journal":{"name":"Journal of Visual Languages and Computing","volume":"42 ","pages":"Pages 76-85"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jvlc.2017.08.007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Languages and Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045926X17300071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Association rules have been widely used for detecting relations between attribute-value pairs of categorical datasets. Existing solutions of mining interesting association rules are based on the support-confidence theory. However, it is non-trivial for the user to understand and modify the rules or the results of intermediate steps in the mining process, because the interestingness of rules might differ largely for various tasks and users. In this paper we reinforce conventional association rule mining process by mapping the entire process into a visualization assisted loop, with which the user workload for modulating parameters and mining rules is reduced, and the mining efficiency is greatly improved. A hierarchical matrix-based visualization technique is proposed for the user to explore the measure value and the intermediate results of association rules. We also design a set of visual exploration tools to support interactively inspection and manipulation of mining process. The effectiveness and usability of our approach is demonstrated with two scenarios.
期刊介绍:
The Journal of Visual Languages and Computing is a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of visual languages and its implication to the art of computing. The journal publishes research papers, state-of-the-art surveys, and review articles in all aspects of visual languages.