Amoeboflagellates and mitochondrial cristae in eukaryote evolution: megasystematics of the new protozoan subkingdoms eozoa and neozoa

T. Cavalier-Smith
{"title":"Amoeboflagellates and mitochondrial cristae in eukaryote evolution: megasystematics of the new protozoan subkingdoms eozoa and neozoa","authors":"T. Cavalier-Smith","doi":"10.1016/S0003-9365(97)80051-6","DOIUrl":null,"url":null,"abstract":"<div><p>Recent molecular and ultrastructural discoveries necessitate major changes in the higher level classification of the kingdom Protozoa. A new class Anaeromonadea and subphylum Anaeromonada are created for the anaerobic tetrakont flagellate <em>Trimastix</em>, which is grouped with Parabasala, ranked as a subphylum, to form the new protozoan phylum Trichozoa. To simplify the supraphyletic classification of Protozoa I dispense with the category parvkingdom by increasing Neozoa in rank from infrakingdom to subkingdom and creating a new subkingdom Eozoa for the eokaryote phyla Trichozoa, Percolozoa and Euglenozoa.</p><p>The subkingdom Neozoa, containing all neokaryote Protozoa, is divided into four infrakingdoms: Sarcodina infrak. nov.; Alveolata <span>Cavalier-Smith</span> 1991; Actinopoda <span>Calkins</span> 1902, stat. nov.; and Neomonada infrak. nov. Sarcodina are subdivided into three superphyla: Eosarcodina superph. nov. (phyla Reticulosa and Mycetozoa); Neosarcodina (phyla Amoebozoa and Rhizopoda); and Haplosporidia (phylum Haplosporidia). Paramyxia are treated as a superclass within infraphylum Sporozoa of the Apicomplexa, not as a separate phylum.</p><p>Major changes are made to the tubulicristate phylum Opalozoa: I transfer the partially pseudopodial opalozoan groups into Rhizopoda; I move Proteromonadida into the subphylum Opalinata, and group the remaining non-opalinate opalozoans with the Choanozoa as a new zooflagellate phylum Neomonada, leaving only the revised Opalinata in the Opalozoa; these residual Opalozoa are left as protists incertae sedis, as it is unclear whether they belong in the kingdom Protozoa or Chromista. Neomonada are divided into four subphyla: Choanozoa stat. nov. (classes Choanoflagellea, Coral lochytrea); Hemimastigophora; Apusozoa subphyl. nov. (classes Thecomonadea, Anisomonadea, Jacobea cl. nov., Ebridea) and Isomita subphyl. nov. (classes Telonemea and Cyathobodonea).</p><p><em>Commation</em> is transferred from Heterokonta to Apusozoa. Three apusozoan orders (Discocelida; Caecitellida; and Commatiida) are created. Within the revised Rhizopoda I group Sarcomonadea (revised by excluding proteomyxids and <em>Jakoba</em>) and Filosea together as a new subphylum Monadofilosa, and group Chlorarachnea with the formerly opalozoan class Proteomyxidea as a second new rhizopod subphylum, Reticulofilosa; Phytomyxea are removed from Opalozoa and treated as a third new rhizopod subphylum, Phytomyxa.</p><p>Lobose amoebae are excluded from Rhizopoda and placed in the separate sarcodine phylum Amoebozoa as a subphylum (Lobosa) comprising the classes Amoebaea and Testacealobosea. A new amoebozoan subphylum (Holomastiga) and class (Holomastigea) are created for <em>Multicilia</em>, and Archamoebae (classes Pelobiontea and Entamoebea) are treated as a third subphylum of Amoebozoa.</p><p>A central role for amoeboflagellates in eukaryote cell evolution is proposed. I suggest that ancestral eukaryotes were non-amoeboid zooflagellates and that the amoeboflagellate condition originated only once in a percolozoan that evolved eruptive pseudopodia to create the Heterolobosea. Later, by evolving graded spatial fine-tuning of cortical properties, these evolved into the non-eruptive pseudopodia of Sarcodina. The non-amoeboid flagellate groups Euglenozoa, Neomonada, and Alveolata may have evolved secondarily by the independent suppression of the amoeboid phase of amoeboflagellates, just as the non-ciliated sarcodine groups evolved polyphyletically from amoeboflagellates by several independent losses of cilia. It is argued that Actinopoda arose from neosarcodine amoeboflagellates by evolving axopodia. The four higher kingdoms did not evolve directly from amoeboflagellates (Animalia and Fungi arose independently from the neomonad Choanozoa, and Plantae and Chromista probably from early alveolates); but, as the neomonads and alveolates themselves evolved from amoeboflagellates, the ancestors of all four higher kingdoms were indirectly descended from amoeboflagellates, and their descendants retained the potential to re-evolve a controlled amoeboid motility. The evolutionary significance of pseudophytoplankton for neokaryote evolution is discussed.</p><p>An evolutionary explanation for the rare changes in the form of mitochondrial cristae during eukaryote cell evolution is proposed: cristal morphology coevolves with plasma membrane properties through the pleiotropic effects of genes affecting membrane composition. Selection acts primarily on plasma membrane properties, and cristal form is a basically neutral response accounted for by correlations of growth. Origin of non-eruptive pseudopods in the ancestral sarcodine could have caused the changeover from discoid to tubular cristae in the ancestral sarcodine, and converse changes in cell cortical properties may account for the polyphyletic flattening of cristae in Plantae, Cryptista, and Opisthokonta.</p></div>","PeriodicalId":100118,"journal":{"name":"Archiv für Protistenkunde","volume":"147 3","pages":"Pages 237-258"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0003-9365(97)80051-6","citationCount":"108","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv für Protistenkunde","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003936597800516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 108

Abstract

Recent molecular and ultrastructural discoveries necessitate major changes in the higher level classification of the kingdom Protozoa. A new class Anaeromonadea and subphylum Anaeromonada are created for the anaerobic tetrakont flagellate Trimastix, which is grouped with Parabasala, ranked as a subphylum, to form the new protozoan phylum Trichozoa. To simplify the supraphyletic classification of Protozoa I dispense with the category parvkingdom by increasing Neozoa in rank from infrakingdom to subkingdom and creating a new subkingdom Eozoa for the eokaryote phyla Trichozoa, Percolozoa and Euglenozoa.

The subkingdom Neozoa, containing all neokaryote Protozoa, is divided into four infrakingdoms: Sarcodina infrak. nov.; Alveolata Cavalier-Smith 1991; Actinopoda Calkins 1902, stat. nov.; and Neomonada infrak. nov. Sarcodina are subdivided into three superphyla: Eosarcodina superph. nov. (phyla Reticulosa and Mycetozoa); Neosarcodina (phyla Amoebozoa and Rhizopoda); and Haplosporidia (phylum Haplosporidia). Paramyxia are treated as a superclass within infraphylum Sporozoa of the Apicomplexa, not as a separate phylum.

Major changes are made to the tubulicristate phylum Opalozoa: I transfer the partially pseudopodial opalozoan groups into Rhizopoda; I move Proteromonadida into the subphylum Opalinata, and group the remaining non-opalinate opalozoans with the Choanozoa as a new zooflagellate phylum Neomonada, leaving only the revised Opalinata in the Opalozoa; these residual Opalozoa are left as protists incertae sedis, as it is unclear whether they belong in the kingdom Protozoa or Chromista. Neomonada are divided into four subphyla: Choanozoa stat. nov. (classes Choanoflagellea, Coral lochytrea); Hemimastigophora; Apusozoa subphyl. nov. (classes Thecomonadea, Anisomonadea, Jacobea cl. nov., Ebridea) and Isomita subphyl. nov. (classes Telonemea and Cyathobodonea).

Commation is transferred from Heterokonta to Apusozoa. Three apusozoan orders (Discocelida; Caecitellida; and Commatiida) are created. Within the revised Rhizopoda I group Sarcomonadea (revised by excluding proteomyxids and Jakoba) and Filosea together as a new subphylum Monadofilosa, and group Chlorarachnea with the formerly opalozoan class Proteomyxidea as a second new rhizopod subphylum, Reticulofilosa; Phytomyxea are removed from Opalozoa and treated as a third new rhizopod subphylum, Phytomyxa.

Lobose amoebae are excluded from Rhizopoda and placed in the separate sarcodine phylum Amoebozoa as a subphylum (Lobosa) comprising the classes Amoebaea and Testacealobosea. A new amoebozoan subphylum (Holomastiga) and class (Holomastigea) are created for Multicilia, and Archamoebae (classes Pelobiontea and Entamoebea) are treated as a third subphylum of Amoebozoa.

A central role for amoeboflagellates in eukaryote cell evolution is proposed. I suggest that ancestral eukaryotes were non-amoeboid zooflagellates and that the amoeboflagellate condition originated only once in a percolozoan that evolved eruptive pseudopodia to create the Heterolobosea. Later, by evolving graded spatial fine-tuning of cortical properties, these evolved into the non-eruptive pseudopodia of Sarcodina. The non-amoeboid flagellate groups Euglenozoa, Neomonada, and Alveolata may have evolved secondarily by the independent suppression of the amoeboid phase of amoeboflagellates, just as the non-ciliated sarcodine groups evolved polyphyletically from amoeboflagellates by several independent losses of cilia. It is argued that Actinopoda arose from neosarcodine amoeboflagellates by evolving axopodia. The four higher kingdoms did not evolve directly from amoeboflagellates (Animalia and Fungi arose independently from the neomonad Choanozoa, and Plantae and Chromista probably from early alveolates); but, as the neomonads and alveolates themselves evolved from amoeboflagellates, the ancestors of all four higher kingdoms were indirectly descended from amoeboflagellates, and their descendants retained the potential to re-evolve a controlled amoeboid motility. The evolutionary significance of pseudophytoplankton for neokaryote evolution is discussed.

An evolutionary explanation for the rare changes in the form of mitochondrial cristae during eukaryote cell evolution is proposed: cristal morphology coevolves with plasma membrane properties through the pleiotropic effects of genes affecting membrane composition. Selection acts primarily on plasma membrane properties, and cristal form is a basically neutral response accounted for by correlations of growth. Origin of non-eruptive pseudopods in the ancestral sarcodine could have caused the changeover from discoid to tubular cristae in the ancestral sarcodine, and converse changes in cell cortical properties may account for the polyphyletic flattening of cristae in Plantae, Cryptista, and Opisthokonta.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
真核生物进化中的鞭毛虫和线粒体嵴:新原生动物亚界eozoa和neozoa的大系统学
最近的分子和超微结构发现需要对原生动物王国的更高级别分类进行重大改变。厌氧四孔鞭毛虫Trimastix与Parabasala归为一个亚门,形成了一个新的原生动物门Trichozoa。为了简化原生动物的超门分类,我通过将新动物的级别从下界增加到下界,并为原核生物门毛虫门、Percolozoa门和Euglenozoa门创建一个新的下界始虫门,从而省去了小界这一类别。包含所有原核生物原生动物的新动物亚界分为四个亚王国:Sarcodina infrak。十一月Alveolata Cavalier Smith 1991;Calkins放线足目1902年11月。;和Neomonada infrak。nov.Sarcodina被细分为三个超科:Eoscardina superph。nov.(网状动物门和Mycetozoa);新肌足目(阿米巴动物门和根足纲);和单孢菌门。副粘菌被视为Apicompleta孢子虫门下的一个超纲,而不是一个单独的门。管壳动物门Opalozoa发生了重大变化:我将部分伪足类opalozoan类群转移到根足目中;我将Proteromonida移到Opalinata亚门中,并将剩余的非Opalinat opalozoans与Choanozoa归类为新鞭毛动物门,在Opalozoa中只留下修订后的Opalinatia;这些残余的Opalozoa被作为sedis的原生生物留下,因为尚不清楚它们是属于原生动物还是Chromista王国。Neomonada分为四个亚门:Choanozoa stat.nov.(Choano鞭毛虫纲,珊瑚目);半乳鼠;Apusozoa亚门。nov.(Thecomonadea、Anisoonadea、Jacobea cl.nov.、Ebridea纲)和Isomita亚门。nov.(Telonemea和Cyathobodonea类)。Commation从Heteroconta转移到Apusozoa。创建了三个Aposozoan目(Discocelida、Caecitellida和Commatiida)。在修订后的根足目I组中,Sarcomonadea(通过排除蛋白质组和Jakoba进行修订)和Filosea一起作为新的Monadofilosa亚门,Chlorarachnea组与以前的opalozoan纲Protomyxidea一起作为第二个新的根足亚门,网状丝足目;Phytomyxea从Opalozoa中去除,并作为第三个新的根荚亚门Phytomyxa处理。Lobose变形虫被排除在根足纲之外,并作为一个亚门(Lobosa)被置于单独的肌胺门变形虫门中,该亚门包括变形虫纲和Testacealobosea纲。为Multicilia创建了一个新的变形虫亚门(Holomastiga)和纲(Holomastigea),而Archamoebae(Pelobiontea和Entamoeba纲)被视为变形虫的第三亚门。提出了阿米巴鞭毛虫在真核生物细胞进化中的核心作用。我认为祖先的真核生物是非变形虫动物鞭毛虫,变形虫鞭毛虫的情况只在一种percolozoan中起源过一次,这种percolozoa进化出了喷发性伪足,形成了异足目。后来,通过进化皮层特性的分级空间微调,这些特性进化为Sarcodina的非喷发性伪足。非阿米巴鞭毛虫群眼虫、新单体虫和肺泡虫可能是通过对阿米巴鞭毛虫的阿米巴相的独立抑制而二次进化的,就像无纤毛肌苷群是通过几次独立的纤毛缺失而从阿米巴鞭毛藻进化而来的一样。有人认为,放线足纲是由新肌胺变形虫进化而来的。四个高等王国并不是直接从阿米巴鞭毛虫进化而来(Animalia和Fungis独立于新单壳虫,Plantae和Chromista可能来自早期的肺泡虫);但是,由于新单胞菌和肺泡菌本身是由变形虫进化而来的,所有四个高等王国的祖先都是变形虫的间接后裔,他们的后代保留了重新进化受控变形虫运动的潜力。讨论了伪浮游植物在新核生物进化中的重要意义。对真核生物进化过程中线粒体嵴形态的罕见变化提出了一种进化解释:通过影响膜组成的基因的多效性效应,嵴形态与质膜特性共同进化。选择主要作用于质膜的性质,而嵴的形式是一种基本上中性的反应,由生长的相关性来解释。祖先肌苷中非喷发性假足类的起源可能导致祖先肌苷从盘状嵴转变为管状嵴,细胞皮层性质的反向变化可能是Plantae、Cryptista和Opisthokonta嵴多系扁平化的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Studies on a New Brackish Water Euplotes, E. parawoodruffi n. sp., and a Redescription of Euplotes woodruffiGaw, 1939 (Ciliophora; Hypotrichida) Some Heterotrophic Flagellates from a Cultivated Garden Soil in Australia Extrachromosomal Nucleolar Apparatus in the Macronucleus of the Ciliate Paramecium putrinum: LM, EM and Confocal Microscopy Studies Arthrospira skujae, a New Planktic Tropical Cyanoprokaryote Fine Structure of Conjugation of the Ciliate Blepharisma japonicum II. Changes of Meiotic and Ameiotic Micronuclei and Development of Meiotic and Ameiotic Macronuclear Anlagen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1