{"title":"Barrett's Mucosa Segmentation in Endoscopic Images Using a Hybrid Method: Spatial Fuzzy c-mean and Level Set.","authors":"Hossein Yousefi-Banaem, Hossein Rabbani, Peyman Adibi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Barrett's mucosa is one of the most important diseases in upper gastrointestinal system that caused by gastro-esophagus reflux. If left untreated, the disease will cause distal esophagus and gastric cardia adenocarcinoma. The malignancy risk is very high in short segment Barrett's mucosa. Therefore, lesion area segmentation can improve specialist decision for treatment. In this paper, we proposed a combined fuzzy method with active models for Barrett's mucosa segmentation. In this study, we applied three methods for special area segmentation and determination. For whole disease area segmentation, we applied the hybrid fuzzy based level set method (LSM). Morphological algorithms were used for gastroesophageal junction determination, and we discriminated Barrett's mucosa from break by applying Chan-Vase method. Fuzzy c-mean and LSMs fail to segment this type of medical image due to weak boundaries. In contrast, the full automatic hybrid method with correlation approach that has used in this paper segmented the metaplasia area in the endoscopy image with desirable accuracy. The presented approach omits the manually desired cluster selection step that needed the operator manipulation. Obtained results convinced us that this approach is suitable for esophagus metaplasia segmentation.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"6 4","pages":"231-236"},"PeriodicalIF":1.3000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5156999/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Barrett's mucosa is one of the most important diseases in upper gastrointestinal system that caused by gastro-esophagus reflux. If left untreated, the disease will cause distal esophagus and gastric cardia adenocarcinoma. The malignancy risk is very high in short segment Barrett's mucosa. Therefore, lesion area segmentation can improve specialist decision for treatment. In this paper, we proposed a combined fuzzy method with active models for Barrett's mucosa segmentation. In this study, we applied three methods for special area segmentation and determination. For whole disease area segmentation, we applied the hybrid fuzzy based level set method (LSM). Morphological algorithms were used for gastroesophageal junction determination, and we discriminated Barrett's mucosa from break by applying Chan-Vase method. Fuzzy c-mean and LSMs fail to segment this type of medical image due to weak boundaries. In contrast, the full automatic hybrid method with correlation approach that has used in this paper segmented the metaplasia area in the endoscopy image with desirable accuracy. The presented approach omits the manually desired cluster selection step that needed the operator manipulation. Obtained results convinced us that this approach is suitable for esophagus metaplasia segmentation.
期刊介绍:
JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.