Geoffrey M. Vasil , Daniel Lecoanet , Keaton J. Burns , Jeffrey S. Oishi , Benjamin P. Brown
{"title":"Tensor calculus in spherical coordinates using Jacobi polynomials. Part-I: Mathematical analysis and derivations","authors":"Geoffrey M. Vasil , Daniel Lecoanet , Keaton J. Burns , Jeffrey S. Oishi , Benjamin P. Brown","doi":"10.1016/j.jcpx.2019.100013","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a method for accurate and efficient computations on scalar, vector and tensor fields in three-dimensional spherical polar coordinates. The method uses spin-weighted spherical harmonics in the angular directions and rescaled Jacobi polynomials in the radial direction. For the 2-sphere, spin-weighted harmonics allow for automating calculations in a fashion as similar to Fourier series as possible. Derivative operators act as wavenumber multiplication on a set of spectral coefficients. After transforming the angular directions, a set of orthogonal tensor rotations put the radially dependent spectral coefficients into individual spaces each obeying a particular regularity condition at the origin. These regularity spaces have remarkably simple properties under standard vector-calculus operations, such as <em>gradient</em> and <em>divergence</em>. We use a hierarchy of rescaled Jacobi polynomials for a basis on these regularity spaces. It is possible to select the Jacobi-polynomial parameters such that all relevant operators act in a minimally banded way. Altogether, the geometric structure allows for the accurate and efficient solution of general partial differential equations in the unit ball.</p></div>","PeriodicalId":37045,"journal":{"name":"Journal of Computational Physics: X","volume":"3 ","pages":"Article 100013"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcpx.2019.100013","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590055219300290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
This paper presents a method for accurate and efficient computations on scalar, vector and tensor fields in three-dimensional spherical polar coordinates. The method uses spin-weighted spherical harmonics in the angular directions and rescaled Jacobi polynomials in the radial direction. For the 2-sphere, spin-weighted harmonics allow for automating calculations in a fashion as similar to Fourier series as possible. Derivative operators act as wavenumber multiplication on a set of spectral coefficients. After transforming the angular directions, a set of orthogonal tensor rotations put the radially dependent spectral coefficients into individual spaces each obeying a particular regularity condition at the origin. These regularity spaces have remarkably simple properties under standard vector-calculus operations, such as gradient and divergence. We use a hierarchy of rescaled Jacobi polynomials for a basis on these regularity spaces. It is possible to select the Jacobi-polynomial parameters such that all relevant operators act in a minimally banded way. Altogether, the geometric structure allows for the accurate and efficient solution of general partial differential equations in the unit ball.