A general framework for hypercomplex-valued extreme learning machines

Guilherme Vieira, Marcos Eduardo Valle
{"title":"A general framework for hypercomplex-valued extreme learning machines","authors":"Guilherme Vieira,&nbsp;Marcos Eduardo Valle","doi":"10.1016/j.jcmds.2022.100032","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims to establish a framework for extreme learning machines (ELMs) on general hypercomplex algebras. Hypercomplex neural networks are machine learning models that feature higher-dimension numbers as parameters, inputs, and outputs. Firstly, we review broad hypercomplex algebras and show a framework to operate in these algebras through real-valued linear algebra operations in a robust manner. We proceed to explore a handful of well-known four-dimensional examples. Then, we propose the hypercomplex-valued ELMs and derive their learning using a hypercomplex-valued least-squares problem. Finally, we compare real and hypercomplex-valued ELM models’ performance in an experiment on time-series prediction and another on color image auto-encoding. The computational experiments highlight the excellent performance of hypercomplex-valued ELMs to treat multi-dimensional data, including models based on unusual hypercomplex algebras.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"3 ","pages":"Article 100032"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415822000062/pdfft?md5=a9358c110cb7cefa5f7093886926f21f&pid=1-s2.0-S2772415822000062-main.pdf","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415822000062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper aims to establish a framework for extreme learning machines (ELMs) on general hypercomplex algebras. Hypercomplex neural networks are machine learning models that feature higher-dimension numbers as parameters, inputs, and outputs. Firstly, we review broad hypercomplex algebras and show a framework to operate in these algebras through real-valued linear algebra operations in a robust manner. We proceed to explore a handful of well-known four-dimensional examples. Then, we propose the hypercomplex-valued ELMs and derive their learning using a hypercomplex-valued least-squares problem. Finally, we compare real and hypercomplex-valued ELM models’ performance in an experiment on time-series prediction and another on color image auto-encoding. The computational experiments highlight the excellent performance of hypercomplex-valued ELMs to treat multi-dimensional data, including models based on unusual hypercomplex algebras.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超复值极限学习机的一般框架
本文旨在为一般超复代数上的极限学习机(ELM)建立一个框架。超复杂神经网络是以高维数字为参数、输入和输出的机器学习模型。首先,我们回顾了广义超复代数,并展示了一个通过实值线性代数运算在这些代数中以稳健的方式进行运算的框架。我们继续探索一些众所周知的四维例子。然后,我们提出了超复值ELM,并使用超复值最小二乘问题推导了它们的学习。最后,我们比较了实数和超复数值ELM模型在时间序列预测实验和彩色图像自动编码实验中的性能。计算实验强调了超复数值ELM在处理多维数据方面的优异性能,包括基于异常超复数代数的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Efficiency of the multisection method Bayesian optimization of one-dimensional convolutional neural networks (1D CNN) for early diagnosis of Autistic Spectrum Disorder Novel color space representation extracted by NMF to segment a color image Enhanced MRI brain tumor detection and classification via topological data analysis and low-rank tensor decomposition Artifact removal from ECG signals using online recursive independent component analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1