Linear model decision trees as surrogates in optimization of engineering applications

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2023-10-01 DOI:10.1016/j.compchemeng.2023.108347
Bashar L. Ammari , Emma S. Johnson , Georgia Stinchfield , Taehun Kim , Michael Bynum , William E. Hart , Joshua Pulsipher , Carl D. Laird
{"title":"Linear model decision trees as surrogates in optimization of engineering applications","authors":"Bashar L. Ammari ,&nbsp;Emma S. Johnson ,&nbsp;Georgia Stinchfield ,&nbsp;Taehun Kim ,&nbsp;Michael Bynum ,&nbsp;William E. Hart ,&nbsp;Joshua Pulsipher ,&nbsp;Carl D. Laird","doi":"10.1016/j.compchemeng.2023.108347","DOIUrl":null,"url":null,"abstract":"<div><p><span>Machine learning models are promising as surrogates in optimization when replacing difficult to solve equations or black-box type models. This work demonstrates the viability of linear model decision trees as piecewise-linear surrogates in decision-making problems. Linear model decision trees can be represented exactly in mixed-integer linear programming (MILP) and mixed-integer quadratic constrained programming (MIQCP) formulations. Furthermore, they can represent discontinuous functions, bringing advantages over neural networks in some cases. We present several formulations using transformations from Generalized Disjunctive Programming (GDP) formulations and modifications of MILP formulations for gradient boosted decision trees (GBDT). We then compare the computational performance of these different MILP and MIQCP representations in an optimization problem and illustrate their use on </span>engineering applications. We observe faster solution times for optimization problems with linear model decision tree surrogates when compared with GBDT surrogates using the Optimization and Machine Learning Toolkit (OMLT).</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"178 ","pages":"Article 108347"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009813542300217X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

Abstract

Machine learning models are promising as surrogates in optimization when replacing difficult to solve equations or black-box type models. This work demonstrates the viability of linear model decision trees as piecewise-linear surrogates in decision-making problems. Linear model decision trees can be represented exactly in mixed-integer linear programming (MILP) and mixed-integer quadratic constrained programming (MIQCP) formulations. Furthermore, they can represent discontinuous functions, bringing advantages over neural networks in some cases. We present several formulations using transformations from Generalized Disjunctive Programming (GDP) formulations and modifications of MILP formulations for gradient boosted decision trees (GBDT). We then compare the computational performance of these different MILP and MIQCP representations in an optimization problem and illustrate their use on engineering applications. We observe faster solution times for optimization problems with linear model decision tree surrogates when compared with GBDT surrogates using the Optimization and Machine Learning Toolkit (OMLT).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性模型决策树在工程应用优化中的替代
当机器学习模型取代难以求解的方程或黑盒型模型时,机器学习模型有望作为优化的替代品。这项工作证明了线性模型决策树作为决策问题中的分段线性代理的可行性。线性模型决策树可以用混合整数线性规划(MILP)和混合整数二次约束规划(MIQCP)公式精确地表示。此外,它们可以表示不连续的函数,在某些情况下比神经网络更具优势。我们提出了几个公式,使用了广义虚拟规划(GDP)公式的转换和梯度增强决策树(GBDT)的MILP公式的修改。然后,我们比较了这些不同的MILP和MIQCP表示在优化问题中的计算性能,并说明了它们在工程应用中的应用。与使用优化和机器学习工具包(OMLT)的GBDT代理相比,我们观察到使用线性模型决策树代理的优化问题的解决时间更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
The bullwhip effect, market competition and standard deviation ratio in two parallel supply chains CADET-Julia: Efficient and versatile, open-source simulator for batch chromatography in Julia Computer aided formulation design based on molecular dynamics simulation: Detergents with fragrance Model-based real-time optimization in continuous pharmaceutical manufacturing Risk-averse supply chain management via robust reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1