{"title":"Efficient symmetry-based γ-encoded DQ recoupling sequences for suppression of t1-noise in solid-state NMR spectroscopy at fast MAS","authors":"Yusuke Nishiyama , Vipin Agarwal , Rongchun Zhang","doi":"10.1016/j.ssnmr.2021.101734","DOIUrl":null,"url":null,"abstract":"<div><p><span>Solid-state NMR spectroscopy has played a significant role in elucidating the structure and dynamics of materials and biological solids at a molecular level for decades. In particular, the </span><sup>1</sup>H double-quantum/single-quantum (DQ/SQ) chemical shift correlation experiment is widely used for probing the proximity of protons, rendering it a powerful tool for elucidating the hydrogen-bonding interactions and molecular packing of various complex molecular systems. Two factors, namely, the DQ filtering efficiency and <em>t</em><sub>1</sub>-noise, dictate the quality of the 2D <sup>1</sup>H DQ/SQ spectra. Experimentally different recoupling sequences show varied DQ filtering efficiencies and <em>t</em><sub>1</sub>-noise. Herein, after a systematic search of symmetry-based DQ recoupling sequences, we report that the symmetry-based γ-encoded <span><math><mrow><mi>R</mi><msubsup><mi>N</mi><mi>n</mi><mi>ν</mi></msubsup></mrow></math></span> sequences show superior performance to other DQ recoupling sequences, which not only have a higher DQ recoupling efficiency but can also significantly reduce <em>t</em><sub>1</sub>-noise. The origin of <em>t</em><sub>1</sub>-noise is further discussed in detail via extensive numerical simulations. We envisage that such γ-encoded <span><math><mrow><mi>R</mi><msubsup><mi>N</mi><mi>n</mi><mi>ν</mi></msubsup></mrow></math></span> sequences are superior candidates for DQ recoupling in proton-based solid-state NMR spectroscopy due to its capability of efficiently exciting DQ coherences and suppressing <em>t</em><sub>1</sub>-noise.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"114 ","pages":"Article 101734"},"PeriodicalIF":1.8000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2021.101734","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926204021000229","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 13
Abstract
Solid-state NMR spectroscopy has played a significant role in elucidating the structure and dynamics of materials and biological solids at a molecular level for decades. In particular, the 1H double-quantum/single-quantum (DQ/SQ) chemical shift correlation experiment is widely used for probing the proximity of protons, rendering it a powerful tool for elucidating the hydrogen-bonding interactions and molecular packing of various complex molecular systems. Two factors, namely, the DQ filtering efficiency and t1-noise, dictate the quality of the 2D 1H DQ/SQ spectra. Experimentally different recoupling sequences show varied DQ filtering efficiencies and t1-noise. Herein, after a systematic search of symmetry-based DQ recoupling sequences, we report that the symmetry-based γ-encoded sequences show superior performance to other DQ recoupling sequences, which not only have a higher DQ recoupling efficiency but can also significantly reduce t1-noise. The origin of t1-noise is further discussed in detail via extensive numerical simulations. We envisage that such γ-encoded sequences are superior candidates for DQ recoupling in proton-based solid-state NMR spectroscopy due to its capability of efficiently exciting DQ coherences and suppressing t1-noise.
期刊介绍:
The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.