A parallel hp-adaptive high order discontinuous Galerkin method for the incompressible Navier-Stokes equations

N. Chalmers, G. Agbaglah, M. Chrust, C. Mavriplis
{"title":"A parallel hp-adaptive high order discontinuous Galerkin method for the incompressible Navier-Stokes equations","authors":"N. Chalmers,&nbsp;G. Agbaglah,&nbsp;M. Chrust,&nbsp;C. Mavriplis","doi":"10.1016/j.jcpx.2019.100023","DOIUrl":null,"url":null,"abstract":"<div><p>We present a parallel <em>hp</em>-adaptive high order (spectral) discontinuous Galerkin method for approximation of the incompressible Navier-Stokes equations. The spatial discretization consists of equal-order polynomial approximations of the fluid velocity and pressure via discontinuous Galerkin spatial discretizations. For the nonlinear convective term we select the local Lax-Friedrichs flux, while for the divergence and gradient operators central fluxes are chosen. For the diffusive term, we use an interior penalty discontinuous Galerkin method to ensure stability and invertibility. The temporal discretization is an implicit-explicit Runge-Kutta method paired with a high-order splitting procedure to efficiently enforce the incompressibility condition at each time step. The compact stencil size, explicit time stepping of nonlinear terms, and inversion of sparse linear systems make the resulting method simple to parallelize while the local nature of the discontinuous Galerkin approximation makes <em>hp</em>-adaptive refinement natural to implement. We detail our implementation consisting of a tensor product basis of high order polynomials on quadrilateral elements, and implement <em>hp</em>-adaptivity using an inexpensive <em>a posteriori</em> error estimator to determine where refinement is necessary. <em>p</em>-Multigrid and pressure projection techniques are used to precondition the conjugate gradient linear solvers. We present several numerical tests to demonstrate the efficacy of the method, in particular in reducing the number of degrees of freedom needed and allocating computing resources to regions of sharp variation in transient incompressible Navier-Stokes flows.</p></div>","PeriodicalId":37045,"journal":{"name":"Journal of Computational Physics: X","volume":"2 ","pages":"Article 100023"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcpx.2019.100023","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590055219300393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We present a parallel hp-adaptive high order (spectral) discontinuous Galerkin method for approximation of the incompressible Navier-Stokes equations. The spatial discretization consists of equal-order polynomial approximations of the fluid velocity and pressure via discontinuous Galerkin spatial discretizations. For the nonlinear convective term we select the local Lax-Friedrichs flux, while for the divergence and gradient operators central fluxes are chosen. For the diffusive term, we use an interior penalty discontinuous Galerkin method to ensure stability and invertibility. The temporal discretization is an implicit-explicit Runge-Kutta method paired with a high-order splitting procedure to efficiently enforce the incompressibility condition at each time step. The compact stencil size, explicit time stepping of nonlinear terms, and inversion of sparse linear systems make the resulting method simple to parallelize while the local nature of the discontinuous Galerkin approximation makes hp-adaptive refinement natural to implement. We detail our implementation consisting of a tensor product basis of high order polynomials on quadrilateral elements, and implement hp-adaptivity using an inexpensive a posteriori error estimator to determine where refinement is necessary. p-Multigrid and pressure projection techniques are used to precondition the conjugate gradient linear solvers. We present several numerical tests to demonstrate the efficacy of the method, in particular in reducing the number of degrees of freedom needed and allocating computing resources to regions of sharp variation in transient incompressible Navier-Stokes flows.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求解不可压缩Navier-Stokes方程的并行hp自适应高阶间断Galerkin方法
我们提出了一种并行的hp自适应高阶(谱)不连续Galerkin方法来逼近不可压缩Navier-Stokes方程。空间离散化由流体速度和压力的等阶多项式近似通过不连续的Galerkin空间离散化组成。对于非线性对流项,我们选择局部Lax-Friedrichs通量,而对于散度和梯度算子,我们选择中心通量。对于扩散项,我们使用内部惩罚不连续伽辽金方法来确保稳定性和可逆性。时间离散化是一种隐式-显式龙格-库塔方法,与高阶分裂过程相结合,以在每个时间步长有效地强化不可压缩性条件。紧凑的模板大小、非线性项的显式时间步长和稀疏线性系统的反演使所得到的方法易于并行化,而不连续Galerkin近似的局部性质使hp自适应精化易于实现。我们详细介绍了由四边形元素上高阶多项式的张量积基础组成的实现,并使用廉价的后验误差估计器实现了hp自适应,以确定哪里需要细化。p-Multigrid和压力投影技术用于预处理共轭梯度线性解算器。我们提出了几个数值测试来证明该方法的有效性,特别是在减少所需的自由度数量和将计算资源分配给瞬态不可压缩Navier-Stokes流中急剧变化的区域方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Physics: X
Journal of Computational Physics: X Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
6.10
自引率
0.00%
发文量
7
期刊最新文献
Editorial Board Monte Carlo radiative transfer peel off mechanism for spatially extended detectors Relative acceleration of orthonormal basis vectors for the geometric conduction blocks of the cardiac electric signal propagation on anisotropic curved surfaces Ensemble transport smoothing. Part I: Unified framework Ensemble transport smoothing. Part II: Nonlinear updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1