Divergence-free magnetohydrodynamics on conformally moving, adaptive meshes using a vector potential method

P. Chris Fragile , Daniel Nemergut , Payden L. Shaw , Peter Anninos
{"title":"Divergence-free magnetohydrodynamics on conformally moving, adaptive meshes using a vector potential method","authors":"P. Chris Fragile ,&nbsp;Daniel Nemergut ,&nbsp;Payden L. Shaw ,&nbsp;Peter Anninos","doi":"10.1016/j.jcpx.2019.100020","DOIUrl":null,"url":null,"abstract":"<div><p>We present a new method for evolving the equations of magnetohydrodynamics (both Newtonian and relativistic) that is capable of maintaining a divergence-free magnetic field (<span><math><mi>∇</mi><mo>⋅</mo><mi>B</mi><mo>=</mo><mn>0</mn></math></span>) on adaptively refined, conformally moving meshes. The method relies on evolving the magnetic vector potential and then using it to reconstruct the magnetic fields. The advantage of this approach is that the vector potential is not subject to a constraint equation in the same way the magnetic field is, and so can be refined and moved in a straightforward way. We test this new method against a wide array of problems from simple Alfvén waves on a uniform grid to general relativistic MHD simulations of black hole accretion on a nested, spherical-polar grid. We find that the code produces accurate results and in all cases maintains a divergence-free magnetic field to machine precision.</p></div>","PeriodicalId":37045,"journal":{"name":"Journal of Computational Physics: X","volume":"2 ","pages":"Article 100020"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcpx.2019.100020","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590055219300368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present a new method for evolving the equations of magnetohydrodynamics (both Newtonian and relativistic) that is capable of maintaining a divergence-free magnetic field (B=0) on adaptively refined, conformally moving meshes. The method relies on evolving the magnetic vector potential and then using it to reconstruct the magnetic fields. The advantage of this approach is that the vector potential is not subject to a constraint equation in the same way the magnetic field is, and so can be refined and moved in a straightforward way. We test this new method against a wide array of problems from simple Alfvén waves on a uniform grid to general relativistic MHD simulations of black hole accretion on a nested, spherical-polar grid. We find that the code produces accurate results and in all cases maintains a divergence-free magnetic field to machine precision.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用矢量势方法的保形运动自适应网格上的无发散磁流体动力学
我们提出了一种新的方法来发展磁流体动力学方程(牛顿和相对论),该方法能够在自适应精细、共形移动的网格上保持无发散磁场(Ş∙B=0)。该方法依赖于演化磁矢量势,然后使用它来重建磁场。这种方法的优点是,矢量势不像磁场那样受到约束方程的约束,因此可以以简单的方式进行细化和移动。我们针对一系列问题测试了这种新方法,从均匀网格上的简单Alfvén波到嵌套球形极网格上黑洞吸积的一般相对论MHD模拟。我们发现,该代码产生了准确的结果,并且在所有情况下都保持了机器精度的无发散磁场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Physics: X
Journal of Computational Physics: X Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
6.10
自引率
0.00%
发文量
7
期刊最新文献
Editorial Board Monte Carlo radiative transfer peel off mechanism for spatially extended detectors Relative acceleration of orthonormal basis vectors for the geometric conduction blocks of the cardiac electric signal propagation on anisotropic curved surfaces Ensemble transport smoothing. Part I: Unified framework Ensemble transport smoothing. Part II: Nonlinear updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1