{"title":"Numerical simulation of the temperature field of titania-bearing BF slag heated in a microwave oven","authors":"Liangying Wen, Chenguang Bai, Guibao Qiu, Jian Zhang, Shengfu Zhang, Zhanjun Long","doi":"10.1016/S1005-8850(08)60072-9","DOIUrl":null,"url":null,"abstract":"<div><p>Considering the characteristic of selective heating of microwave and the treatment of titania-bearing BF slag, a mathematical model for the heating of a slag specimen is developed. The temperature distribution in the specimen is studied by numerical simulation. The temperature in the center of the cylindrical slag specimen is the highest and the temperature decreases when the radius increases rapidly. In this case, the temperature rising rate decreases with heating time rapidly, and it tends to zero when the heating time is up to 150 s.</p></div>","PeriodicalId":100851,"journal":{"name":"Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material","volume":"15 4","pages":"Pages 379-384"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1005-8850(08)60072-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1005885008600729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Considering the characteristic of selective heating of microwave and the treatment of titania-bearing BF slag, a mathematical model for the heating of a slag specimen is developed. The temperature distribution in the specimen is studied by numerical simulation. The temperature in the center of the cylindrical slag specimen is the highest and the temperature decreases when the radius increases rapidly. In this case, the temperature rising rate decreases with heating time rapidly, and it tends to zero when the heating time is up to 150 s.