{"title":"On the controllability and stabilization of the Benjamin equation on a periodic domain","authors":"M. Panthee, F. Vielma Leal","doi":"10.1016/j.anihpc.2020.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to study the controllability and stabilization for the Benjamin equation on a periodic domain <span><math><mi>T</mi></math></span>. We show that the Benjamin equation is globally exactly controllable and globally exponentially stabilizable in <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><mi>T</mi><mo>)</mo></math></span>, with <span><math><mi>s</mi><mo>≥</mo><mn>0</mn></math></span>. The global exponential stabilizability corresponding to a natural feedback law is first established with the aid of certain properties of solution, viz., propagation of compactness and propagation of regularity in Bourgain's spaces. The global exponential stability of the system combined with a local controllability result yields the global controllability as well. Using a different feedback law, the resulting closed-loop system is shown to be locally exponentially stable with an arbitrarily large decay rate. A time-varying feedback law is further designed to ensure a global exponential stability with an arbitrary large decay rate. The results obtained here extend the ones we proved for the linearized Benjamin equation in <span>[32]</span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.12.004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920301244","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to study the controllability and stabilization for the Benjamin equation on a periodic domain . We show that the Benjamin equation is globally exactly controllable and globally exponentially stabilizable in , with . The global exponential stabilizability corresponding to a natural feedback law is first established with the aid of certain properties of solution, viz., propagation of compactness and propagation of regularity in Bourgain's spaces. The global exponential stability of the system combined with a local controllability result yields the global controllability as well. Using a different feedback law, the resulting closed-loop system is shown to be locally exponentially stable with an arbitrarily large decay rate. A time-varying feedback law is further designed to ensure a global exponential stability with an arbitrary large decay rate. The results obtained here extend the ones we proved for the linearized Benjamin equation in [32].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.