Microstructural analysis of inherent and induced anisotropy in clay

P. Y. Hicher, H. Wahyudi, D. Tessier
{"title":"Microstructural analysis of inherent and induced anisotropy in clay","authors":"P. Y. Hicher,&nbsp;H. Wahyudi,&nbsp;D. Tessier","doi":"10.1002/1099-1484(200007)5:5<341::AID-CFM99>3.0.CO;2-C","DOIUrl":null,"url":null,"abstract":"<p>The aim of this study was to relate the mechanical behaviour of saturated clays to their structural characteristics. Two clays were studied: a kaolinite and a bentonite. The evolution of the shape, the size, the concentration and the orientation of the elements which constitute the clay structure was examined by means of scanning and transmission electron microscopes. Particular care was taken to avoid as far as possible disturbing the micro-structure during observation. The results showed the existence of particle breakage and the creation of structural anisotropy during loading. We can conclude from this work that the mechanical behaviour to clayed materials is largely dependent on the changes which occur at the scale of the particles. Copyright © 2000 John Wiley &amp; Sons Ltd.</p>","PeriodicalId":100899,"journal":{"name":"Mechanics of Cohesive-frictional Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1099-1484(200007)5:5<341::AID-CFM99>3.0.CO;2-C","citationCount":"107","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Cohesive-frictional Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/1099-1484%28200007%295%3A5%3C341%3A%3AAID-CFM99%3E3.0.CO%3B2-C","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 107

Abstract

The aim of this study was to relate the mechanical behaviour of saturated clays to their structural characteristics. Two clays were studied: a kaolinite and a bentonite. The evolution of the shape, the size, the concentration and the orientation of the elements which constitute the clay structure was examined by means of scanning and transmission electron microscopes. Particular care was taken to avoid as far as possible disturbing the micro-structure during observation. The results showed the existence of particle breakage and the creation of structural anisotropy during loading. We can conclude from this work that the mechanical behaviour to clayed materials is largely dependent on the changes which occur at the scale of the particles. Copyright © 2000 John Wiley & Sons Ltd.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粘土固有各向异性和诱导各向异性的微观结构分析
本研究的目的是将饱和粘土的力学行为与其结构特征联系起来。研究了两种粘土:高岭石和膨润土。用扫描和透射电子显微镜研究了构成粘土结构的元素的形状、大小、浓度和取向的演变。特别注意在观察过程中尽可能避免干扰微观结构。结果表明,在加载过程中存在颗粒破碎和结构各向异性的产生。从这项工作中我们可以得出结论,粘土材料的力学行为在很大程度上取决于颗粒尺度上发生的变化。版权所有©2000 John Wiley&;儿子有限公司。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Instabilities in granular materials and application to landslides Computational Geomechanics with Special Reference to Earthquake Engineering, by O. C. Zienkiewicz, A. H. C. Chan, M. Pastor, B. A. Schrefler, T. Shiomi, by John Wiley, New York, 1999. ISBN 0-471-98285-7. GBP £100.00. Damage model for concrete-like materials coupling cracking and friction, contribution towards structural damping: first uniaxial applications Modelling of solid-phase sintering of hardmetal using a mesomechanics approach Modelling of solid‐phase sintering of hardmetal using a mesomechanics approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1