{"title":"Integrated Decisions on Online Product Image Configuration and Inventory Planning Using DPSO","authors":"Kuan-Chung Shih, Yan-Kwang Chen, Yi-Ming Li, Chih-Teng Chen","doi":"10.4018/IJDSST.2020100101","DOIUrl":null,"url":null,"abstract":"Integrated decisions on merchandise image display and inventory planning are closely related to operational performance of online stores. A visual-attention-dependent demand (VADD) model has been developed to support online stores make the decisions. In the face of evolving products, customer needs, and competitors in an e-commerce environment, the benefits of using VADD model depend on how fast the model runs on the computer. As a result, a discrete particle swarm optimization (DPSO) method is employed to solve the VADD model. To verify the usability and effectiveness of DPSO method, it was compared with the existing methods for large-scale, medium-scale, and small-scale problems. The comparison results show that both GA and DPSO method perform well in terms of the approximation rate, but the DPSO method takes less time than the GA method. A sensitivity is conducted to determine the model parameters that influence the above comparison result.","PeriodicalId":42414,"journal":{"name":"International Journal of Decision Support System Technology","volume":"10 1","pages":"1-20"},"PeriodicalIF":0.6000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4018/IJDSST.2020100101","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Decision Support System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJDSST.2020100101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Integrated decisions on merchandise image display and inventory planning are closely related to operational performance of online stores. A visual-attention-dependent demand (VADD) model has been developed to support online stores make the decisions. In the face of evolving products, customer needs, and competitors in an e-commerce environment, the benefits of using VADD model depend on how fast the model runs on the computer. As a result, a discrete particle swarm optimization (DPSO) method is employed to solve the VADD model. To verify the usability and effectiveness of DPSO method, it was compared with the existing methods for large-scale, medium-scale, and small-scale problems. The comparison results show that both GA and DPSO method perform well in terms of the approximation rate, but the DPSO method takes less time than the GA method. A sensitivity is conducted to determine the model parameters that influence the above comparison result.