{"title":"An Extended Model for the UAVs-Assisted Multiperiodic Crowd Tracking Problem","authors":"Skander Htiouech, Khalil Chebil, Mahdi Khemakhem, Fidaa Abed, Monaji H. Alkiani","doi":"10.1155/2023/3001812","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The multiperiodic crowd tracking (MPCT) problem is an extension of the periodic crowd tracking (PCT) problem, recently addressed in the literature and solved using an iterative solver called PCTs solver. For a given crowded event, the MPCT consists of follow-up crowds, using unmanned aerial vehicles (UAVs) during different periods in a life-cycle of an open crowded area (OCA). Our main motivation is to remedy an important limitation of the PCTs solver called “PCTs solver <i>myopia</i>” which is, in certain cases, unable to manage the fleet of UAVs to cover all the periods of a given OCA life-cycle during a crowded event. The behavior of crowds can be predicted using machine learning techniques. Based on this assumption, we proposed a new mixed integer linear programming (MILP) model, called MILP-MPCT, to solve the MPCT. The MILP-MPCT was designed using linear programming technique to build two objective functions that minimize the total time and energy consumed by UAVs under a set of constraints related to the MPCT problem. In order to validate the MILP-MPCT, we simulated it using IBM-ILOG-CPLEX optimization framework. Thanks to the “<i>clairvoyance</i>” of the proposed MILP-MPCT model, experimental investigations show that the MILP-MPCT model provides strategic moves of UAVs between charging stations (CSs) and crowds to provide better solutions than those reported in the literature.</p>\n </div>","PeriodicalId":50653,"journal":{"name":"Complexity","volume":"2023 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/3001812","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complexity","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2023/3001812","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The multiperiodic crowd tracking (MPCT) problem is an extension of the periodic crowd tracking (PCT) problem, recently addressed in the literature and solved using an iterative solver called PCTs solver. For a given crowded event, the MPCT consists of follow-up crowds, using unmanned aerial vehicles (UAVs) during different periods in a life-cycle of an open crowded area (OCA). Our main motivation is to remedy an important limitation of the PCTs solver called “PCTs solver myopia” which is, in certain cases, unable to manage the fleet of UAVs to cover all the periods of a given OCA life-cycle during a crowded event. The behavior of crowds can be predicted using machine learning techniques. Based on this assumption, we proposed a new mixed integer linear programming (MILP) model, called MILP-MPCT, to solve the MPCT. The MILP-MPCT was designed using linear programming technique to build two objective functions that minimize the total time and energy consumed by UAVs under a set of constraints related to the MPCT problem. In order to validate the MILP-MPCT, we simulated it using IBM-ILOG-CPLEX optimization framework. Thanks to the “clairvoyance” of the proposed MILP-MPCT model, experimental investigations show that the MILP-MPCT model provides strategic moves of UAVs between charging stations (CSs) and crowds to provide better solutions than those reported in the literature.
期刊介绍:
Complexity is a cross-disciplinary journal focusing on the rapidly expanding science of complex adaptive systems. The purpose of the journal is to advance the science of complexity. Articles may deal with such methodological themes as chaos, genetic algorithms, cellular automata, neural networks, and evolutionary game theory. Papers treating applications in any area of natural science or human endeavor are welcome, and especially encouraged are papers integrating conceptual themes and applications that cross traditional disciplinary boundaries. Complexity is not meant to serve as a forum for speculation and vague analogies between words like “chaos,” “self-organization,” and “emergence” that are often used in completely different ways in science and in daily life.