{"title":"Automatic Data Clustering using Dynamic Crow Search Algorithm","authors":"Rajesh Ranjan, J. Chhabra","doi":"10.4108/eai.17-5-2022.173982","DOIUrl":null,"url":null,"abstract":"This work proposes Automatic clustering using Dynamic Crow Search Algorithm, which updates its parameters dynamically. Crow Search is a recently proposed algorithm that imitates the working of crow. Clustering is an essential aspect of data analysis whose significance has increased manifold since the advancements of technology which has led to enormous data generation, which need to be analysed in real-time. Automatic clustering detects optimal cluster numbers and produces sustainable cluster centroids. ACDCSA uses Cluster Validity using Nearest Neighbour as an internal validity measure that acts as a fitness function to find the optimal cluster centres. The present work is compared with some well-known other meta-heuristic search algorithms like PSO, DE, WOA and GWO for the automatic clustering task over seven benchmark clustering datasets. Inter-cluster distance, intra-cluster distance and the optimal cluster number produced are used to assess the performance of ACDCSA.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.17-5-2022.173982","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
This work proposes Automatic clustering using Dynamic Crow Search Algorithm, which updates its parameters dynamically. Crow Search is a recently proposed algorithm that imitates the working of crow. Clustering is an essential aspect of data analysis whose significance has increased manifold since the advancements of technology which has led to enormous data generation, which need to be analysed in real-time. Automatic clustering detects optimal cluster numbers and produces sustainable cluster centroids. ACDCSA uses Cluster Validity using Nearest Neighbour as an internal validity measure that acts as a fitness function to find the optimal cluster centres. The present work is compared with some well-known other meta-heuristic search algorithms like PSO, DE, WOA and GWO for the automatic clustering task over seven benchmark clustering datasets. Inter-cluster distance, intra-cluster distance and the optimal cluster number produced are used to assess the performance of ACDCSA.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.