{"title":"The Effects of Meteorological and Hydrological Conditions on Nutrient Losses from Agricultural Areas in Latvia","authors":"Ieva Siksnane, A. Lagzdins","doi":"10.2478/rtuect-2022-0039","DOIUrl":null,"url":null,"abstract":"Abstract Water quality in any stream is affected by complex interactions between natural and anthropogenic factors in a given catchment area. Agriculture has been identified as a major contributor of nitrogen and phosphorus inputs to surface waters in the Baltic Sea region. Although decisions regarding agricultural management practices, e.g. crop rotation, tillage, fertilization, have a direct impact on likelihood and magnitude of nitrogen and phosphorus losses from agricultural areas to surface waters, natural factors such as meteorological and hydrological conditions have a triggering role in processes determining transformations, storage, uptake and losses of nutrients. In order to investigate the effects of meteorological (precipitation and air temperature) and hydrological (runoff) conditions on water quality (losses of total nitrogen (TN) and total phosphorus (TP)) the results of the Agricultural Runoff Monitoring Programme collected at three monitoring sites (Berze, Mellupite, and Vienziemite) during the time period of 1995–2020 were summarized and analysed. The pronounced differences in mean annual air temperature and annual precipitation were observed when the meteorological information representing the periods of twenty years was compared indicating for evidences of climate change. In addition, the relationships between seasonal precipitation and runoff was detected. As affected by the hydrological behaviour the losses of TN and TP in agricultural catchments had large variations depending on the intensity of agricultural production and site location. The changes in seasonal and annual patterns of precipitation, air temperature and runoff may increase the risks of nutrient losses from agricultural catchments in the future.","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":"28 12","pages":"512 - 523"},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2022-0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Water quality in any stream is affected by complex interactions between natural and anthropogenic factors in a given catchment area. Agriculture has been identified as a major contributor of nitrogen and phosphorus inputs to surface waters in the Baltic Sea region. Although decisions regarding agricultural management practices, e.g. crop rotation, tillage, fertilization, have a direct impact on likelihood and magnitude of nitrogen and phosphorus losses from agricultural areas to surface waters, natural factors such as meteorological and hydrological conditions have a triggering role in processes determining transformations, storage, uptake and losses of nutrients. In order to investigate the effects of meteorological (precipitation and air temperature) and hydrological (runoff) conditions on water quality (losses of total nitrogen (TN) and total phosphorus (TP)) the results of the Agricultural Runoff Monitoring Programme collected at three monitoring sites (Berze, Mellupite, and Vienziemite) during the time period of 1995–2020 were summarized and analysed. The pronounced differences in mean annual air temperature and annual precipitation were observed when the meteorological information representing the periods of twenty years was compared indicating for evidences of climate change. In addition, the relationships between seasonal precipitation and runoff was detected. As affected by the hydrological behaviour the losses of TN and TP in agricultural catchments had large variations depending on the intensity of agricultural production and site location. The changes in seasonal and annual patterns of precipitation, air temperature and runoff may increase the risks of nutrient losses from agricultural catchments in the future.
期刊介绍:
Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.