A. D. Titisari, D. Phillips, Prayatna, E. P. Setyaraharja
{"title":"40Ar/39Ar Geochronology of Volcanic and Intrusive Rocks in the Papandayan Metallic Prospect Area, West Java, Indonesia","authors":"A. D. Titisari, D. Phillips, Prayatna, E. P. Setyaraharja","doi":"10.1111/rge.12118","DOIUrl":null,"url":null,"abstract":"This study presents new 40Ar/39Ar ages on the volcanic and intrusive rocks from the Papandayan metallic district in West Java, Indonesia. The vein system in the Arinem area, one of the prospective areas in the district, has been considered as an epithermal gold–silver–base metal deposit, however, no published age results are available for the host volcanic rocks in the district. The ages of these rocks are critical in terms of their association with mineralization and are important to understand the evolution of volcanism in the region, which has implications for mineral exploration in the district. 40Ar/39Ar plateau ages of two typical basalt and one andesite samples of the Jampang Formation volcanic rocks yielded ages of 11.65 ± 0.52 Ma, 18.15 ± 0.46 Ma and 7.69 ± 0.05 Ma, respectively. 40Ar/39Ar ages of three intrusive rock samples from Gunung Halang diorite, Gunung Lingga diorite, and Gunung Buligir fine‐grained quartz diorite yielded ages of 12.98 ± 0.20 Ma, 10.81 ± 0.15 Ma, and 7.37 ± 0.05 Ma, respectively. The age of the youngest fine‐grained diorite (Gunung Wayang dike) is 3.95 ± 0.03 Ma. An 40Ar/39Ar age obtained from adularia in the Arinem mineralized vein (18.30 ± 0.20 Ma) is older than the age of altered basalt sample of this study (11.65 ± 0.52 Ma) and the K–Ar illite ages of the Arinem vein (9.4 ± 0.3 Ma and 8.8 ± 0.3 Ma) which resulted from a previous study. The age results suggest that the Papandayan district may have experienced multiple hydrothermal and mineralization events. This study, therefore, provides crucial age data to support future mineral exploration in the district.","PeriodicalId":21089,"journal":{"name":"Resource Geology","volume":"118 3","pages":"53 - 71"},"PeriodicalIF":1.1000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/rge.12118","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resource Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/rge.12118","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
This study presents new 40Ar/39Ar ages on the volcanic and intrusive rocks from the Papandayan metallic district in West Java, Indonesia. The vein system in the Arinem area, one of the prospective areas in the district, has been considered as an epithermal gold–silver–base metal deposit, however, no published age results are available for the host volcanic rocks in the district. The ages of these rocks are critical in terms of their association with mineralization and are important to understand the evolution of volcanism in the region, which has implications for mineral exploration in the district. 40Ar/39Ar plateau ages of two typical basalt and one andesite samples of the Jampang Formation volcanic rocks yielded ages of 11.65 ± 0.52 Ma, 18.15 ± 0.46 Ma and 7.69 ± 0.05 Ma, respectively. 40Ar/39Ar ages of three intrusive rock samples from Gunung Halang diorite, Gunung Lingga diorite, and Gunung Buligir fine‐grained quartz diorite yielded ages of 12.98 ± 0.20 Ma, 10.81 ± 0.15 Ma, and 7.37 ± 0.05 Ma, respectively. The age of the youngest fine‐grained diorite (Gunung Wayang dike) is 3.95 ± 0.03 Ma. An 40Ar/39Ar age obtained from adularia in the Arinem mineralized vein (18.30 ± 0.20 Ma) is older than the age of altered basalt sample of this study (11.65 ± 0.52 Ma) and the K–Ar illite ages of the Arinem vein (9.4 ± 0.3 Ma and 8.8 ± 0.3 Ma) which resulted from a previous study. The age results suggest that the Papandayan district may have experienced multiple hydrothermal and mineralization events. This study, therefore, provides crucial age data to support future mineral exploration in the district.
期刊介绍:
Resource Geology is an international journal focusing on economic geology, geochemistry and environmental geology. Its purpose is to contribute to the promotion of earth sciences related to metallic and non-metallic mineral deposits mainly in Asia, Oceania and the Circum-Pacific region, although other parts of the world are also considered.
Launched in 1998 by the Society for Resource Geology, the journal is published quarterly in English, making it more accessible to the international geological community. The journal publishes high quality papers of interest to those engaged in research and exploration of mineral deposits.